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Abstract

Differential privacy is a foundational concept for safeguarding sensitive individual

information when releasing data or statistical analysis results. In this study, we con-

centrate on the protection of privacy in the context of goodness-of-fit (GOF) and

independence tests, utilizing perturbed contingency tables that adhere to Gaussian

differential privacy within the high-privacy regime, where the degrees of privacy pro-

tection increase as the sample size increases. We introduce private test procedures

for GOF, independence of two variables and the equality of proportions in paired

samples, similar to McNemar's test. For each of these hypothesis testing situations,

we propose private test statistics based on the χ2 statistics and establish their asymp-

totic null distributions. We numerically confirm that Type I error rates of the pro-

posed private test procedures are well controlled and have adequate power for

larger sample sizes and effect sizes. The proposal is demonstrated in private infer-

ences based on the American Time Use Survey data.
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1 | INTRODUCTION

Official administrative data are frequently distributed in the form of contingency tables, as they are a practical and effective means of summariz-

ing, analysing and communicating categorical data and providing relationships among categorical variables. These relationships are often identified

and confirmed through hypothesis tests. However, there have been concerns regarding whether the tables used for these tests have the risk of

violating privacy, as they may contain sensitive private information. When releasing data or results from statistical analyses, data users and pub-

lishers often believed that anonymization, which removes personal information, would be sufficient to protect privacy. However, several

studies(Lin et al., 2004; Samarati & Sweeney, 1998; Sweeney, 2002) have shown that this is not the case due to auxiliary information. To address

this issue, differential privacy (DP) has gained attention across various fields dealing with private sensitive individual data, as it quantifies the risk

of privacy violations formally and mathematically (Dwork, 2006).

In the DP framework, each individual's sensitive information is often protected by adding a random perturbation to the data (Bun &

Steinke, 2016; Dwork & Roth, 2014; Dong et al., 2022; Mironov, 2017). Particularly for contingency tables, the cell counts are perturbed by

adding random noises, while the distribution and variance of the noise are determined by the prespecified level of privacy protection (Dolera &

Favaro, 2021; Gaboardi & Rogers, 2018; Gaboardi et al., 2016; Johnson & Shmatikov, 2013; Kim et al., 2023; Rogers & Kifer, 2017; Rinott et al.,

2018; Smith, 2011; Sheffet, 2018; Son et al., 2022; Uhler et al., 2013; Vu & Slavkovic, 2009; Wang et al., 2015). To be specific, write x¼ðxijÞ for
the original r�c contingency table. By adding independent standard normal random noises zij to each cell count, the perturbed table is u¼ðuijÞ,
uij ¼ xijþ zij. This table u and any further analysis based on u are said to satisfy ‘

ffiffiffi
2

p
-GDP’, where the term ‘GDP’ stands for a particular measure

of DP and
ffiffiffi
2

p
is the level of privacy protection; see Section 1.1, in which we provide necessary background on DP.

In this paper, we investigate large-sample test procedures for randomly perturbed contingency tables, specifically when substantial perturba-

tions are applied to achieve higher levels of privacy protection. We introduce novel differentially private procedures for conducting goodness-of-fit
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(GOF) and independence (homogeneity) tests on general r� c contingency tables, along with a private test for equality of proportions in 2�2

tables. Conventional test procedures for unperturbed tables, such as the well-known χ2 tests and McNemar's test (McNemar, 1947), serve as the

basis for our proposal. Unlike some of the previous attempts at differentially private contingency table analyses (Johnson & Shmatikov, 2013;

Smith, 2011; Vu & Slavkovic, 2009; Uhler et al., 2013) that assume asymptotically negligible perturbation, which limits their applicability in finite-

sample-size scenarios, we take a different approach. We explicitly model the amount of perturbation to increase proportionally with the sample

size n, ensuring that the noise neither overwhelms the original data nor becomes negligible. Our research reveals that the optimal balance is

achieved when the noises zij follow a normal distribution with a standard deviation proportional to
ffiffiffi
n

p
, striking the perfect trade-off between pri-

vacy protection and accurate analysis.

In each hypothesis test scenario, namely, GOF, independence and equality of proportions, we establish differentially private test statistics

represented as χ2 statistics. These test statistics solely rely on the perturbed cell counts in u. Additionally, we derive their asymptotic sampling dis-

tributions under the corresponding null hypothesis. Since we assumed a high-privacy regime (in which the privacy protection becomes stronger as

n increases), the private test statistics asymptotically follow a weighted sum of χ2 distributions each with one degree of freedom. Although this

null distribution may involve unknown true parameters, we conduct empirical analysis demonstrating that substituting the parameters with natural

sample counterparts yields satisfactory results, even with moderate sample sizes. This approach ensures the validity and practicality of our pro-

posed differentially private test procedures.

It is important to note that our study adopts a specific modelling approach for perturbing each cell count, using the normal distribution com-

monly known as the Gaussian mechanism in the DP literature. While the amount of noise can be calibrated to satisfy specific levels of privacy,

adhering to normal distribution enables us to derive the asymptotic null distribution, even when the perturbation is non-negligible. This is in con-

trast to previous approaches of DP contingency table analysis (Dolera & Favaro, 2021; Gaboardi & Rogers, 2018; Gaboardi et al., 2016; Kim et al.,

2023; Johnson & Shmatikov, 2013; Rogers & Kifer, 2017; Sheffet, 2018; Rinott et al., 2018; Smith, 2011; Son et al., 2022; Uhler et al., 2013;

Vu & Slavkovic, 2009; Wang et al., 2015), which use Laplace or truncated exponential mechanisms, as well as Gaussian mechanisms. Those

approaches are thus limited to negligible noises (Johnson & Shmatikov, 2013; Smith, 2011; Uhler et al., 2013; Vu & Slavkovic, 2009) or rely on

resampling-based test procedures (Gaboardi & Rogers, 2018; Kim et al., 2023; Rogers & Kifer, 2017; Son et al., 2022; Wang et al., 2015). Our use

of the Gaussian mechanism allows for a more flexible and accurate analysis, especially in scenarios where the perturbation is significant.

The remaining sections of the paper are structured as follows. Section 1.1 provides the necessary background on DP. In Section 2, we pro-

pose test procedures of differentially private GOF and independence tests for r� c contingency tables and differentially private test of equality of

proportions in paired samples. In Section 3, through simulation studies, we confirm that the type I error rates of the proposed tests are controlled

at the specified significance level, and the power increases under various alternative situations. We also demonstrate their practical application

and effectiveness in real-world situations using American Time Use Survey (ATUS) data in Section 3.3. Section 4 presents a brief discussion sum-

marizing the key findings of our research, potential implications and suggestions for further exploration. Technical details and proofs are contained

in Appendix A.

1.1 | DP and related notions

DP is defined to protect individual privacy by disguising the possible change of an algorithm's output caused by changing one input value. Let X
be a data collection. When two datasets x,y�X differ in one observation, we say that x and y are neighbouring datasets and denote as x� y.

A randomized algorithm M :X !ℝd is ðϵ,δÞ-DP if for all S⊆RangeðMÞ and for all neighbouring datasets x,y�X ,

Pr MðxÞ� S½ �≤ eϵPr MðyÞ� S½ �þδ holds (Dwork et al., 2006). If δ¼0, M is ϵ-differentially private (Dwork, 2006).

This definition of DP provides us with means to measure the privacy guarantees of algorithms, but the interpretation of ϵ is not easy. By

viewing the DP framework as hypothesis testing, the interpretation of DP becomes easier. The hypotheses related to this view of DP are whether

a random variable M, an output of randomized algorithm M, follows a distribution P or Q, where M¼MðxÞ�P and M¼MðyÞ�Q. That is, the

null hypothesis is H0 :M�P (or the dataset at hand is x), and the alternative hypothesis is H1 :M�Q (or the dataset at hand is y). The Gaussian dif-

ferential privacy (GDP) (Dong et al., 2022) is based on this point of view, and the difficulty (or the type I and II errors) of the most powerful test

for the hypotheses are measured in terms of two Gaussian distributions. To measure the privacy guarantees of algorithms with respect to the

GDP, a trade-off function is used. For a test procedure ϕ :M!½0,1� for the hypotheses, let αϕ ¼EM�P½ϕðMÞ� and βϕ ¼1�EM�Q½ϕðMÞ�, which stand

for the type I and II error rates of ϕ, respectively. The trade-off function TðP,QÞ : ½0,1�! ½0,1� between two distribution P and Q in the hypotheses

is defined as TðP,QÞðαÞ¼ inf βϕ : αϕ ≤ α
� �

. When the P and Q are Nð0,1Þ and Nðμ,1Þ for some μ>0, the trade-off function is Gμ :¼ TðNð0,1Þ,Nðμ,1ÞÞ
and GμðαÞ¼ΦðΦ�1ð1�αÞ�μÞ where Φ is the standard normal cumulative distribution function. In the context of neighbouring datasets x and y, if

a privacy mechanism M has a trade-off function that exceeds the trade-off function Gμ, then M is referred to as μ-GDP. It is important to note

that a smaller value of μ>0 corresponds to a higher level of privacy since P�Nð0,1Þ and Q�Nðμ,1Þ are more difficult to discern when μ is small.

We primarily focus on an additive mechanism that adds random noise to the given statistic. The mechanism can be expressed as
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MðxÞ¼ fðxÞþz, ð1Þ

where f :X !ℝd represents a function summarizing the data or estimator of a particular parameter. A simple Gaussian mechanism uses

z�Nð0,σ2IdÞ, where Id is the d-dimensional identity matrix. For any privacy level μ> 0 and an algorithm f, the μ-GDP satisfying mechanism can be

tightly obtained by calibrating the variance σ2. For this purpose, one needs to measure the ℓ2 sensitivity Δf ¼ maxx�y � X fðxÞ� fðyÞk k2, which is

the maximum ℓ2 difference of the algorithm output fðxÞ over exchanging one observation in x�X .

Theorem 1 Gaussian mechanism, Dong et al. (2022). The mechanism M in (1) satisfies μ-GDP if z�N 0,σ2Δf ,μ
Id

� �
where σΔf ,μ ¼

Δf=μ and Δf is ℓ2 sensitivity of f.

Let f be a function that outputs a d-category contingency table. The ℓ2 sensitivity Δ¼Δf of f is
ffiffiffi
2

p
(Kim et al., 2023). This is because contin-

gency tables from two neighbouring sets, differing only by one observation, can have at most one count difference in exactly two categories in

the contingency table. For any μ>0, setting σ2 ¼Δ2=μ2 ¼2=μ2 in the Gaussian mechanism (1) leads that the resulting perturbed contingency table

satisfies μ-GDP. Conversely, for any variance σ20 > 0, the resulting Gaussian mechanism is μ0-GDP for μ0 ¼ σ0=Δ. This seamless translation between

the variance and the privacy parameter μ is difficult when ðϵ,δÞ-DP is used. In particular, for a given variance σ20 > 0, the mechanism is ðϵ,δÞ-DP for

infinitely many pairs of ðϵ,δÞ, as long as they satisfy σ0 ¼Δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logð1:25=δÞp

=ϵ. (Typically, δ is prespecified to be smaller than 1=n.) In this work, we

choose to work with the GDP framework for its simplicity. We remark that it is the Gaussian perturbation that makes the use of GDP more pref-

erable. However, as it will be clearer in the next section, the calculation of the null distributions for the private tests we propose is also made pos-

sible by assuming the Gaussian perturbation.

2 | DIFFERENTIALLY PRIVATE TESTS FOR CONTINGENCY TABLES

In this section, we define test statistics based on perturbed data and derive their asymptotic null distributions for each hypothesis test scenario.

The original unperturbed r�c contingency table is denoted by x, consisting of cell counts corresponding to each category. Let n denote the total

cell count or the sample size. An application of ordinary Gaussian mechanism leads to an additively perturbed contingency table u¼ xþz, where

each element of z independently follows Nð0,σ2nÞ. The amount of perturbation, or the standard deviation σn ¼ σðμ,ΔÞ¼Δ=μ, depends on the speci-

fied level μ of the GDP framework and Δ¼ ffiffiffi
2

p
, the ℓ2 sensitivity of the contingency table.

In this work, we assume that the privacy parameter μ depends on the sample size n. Specifically, we set μ¼ μn ¼ μ0=
ffiffiffi
n

p
for a constant μ0 > 0.

This modelling choice allows us to achieve higher privacy protection for datasets with larger sample sizes, as a smaller value of μ corresponds to

stronger privacy protection. As a consequence, the variance σ2n of the Gaussian mechanism is also influenced by the sample size and can be

expressed as follows:

σ2n ¼
Δ2

μ2
¼ 2

μ20
n:

For simplicity, we denote σ2 :¼2=μ20.

Additionally, we assume that both the sample size n and σ (or equivalently μ0, or μ) are publicly known information. This approach aligns with

the methodology employed by the U.S. Census Bureau in their disclosure of the 2020 Census Redistricting File, wherein certain parameters are

regarded as publicly accessible information (U.S. Census Bureau, 2021).

2.1 | Differentially private GOF test

To formally define our private GOF test procedure, we model the unperturbed contingency table x to follow a multinomial distribution.

Treating x¼ðx1,…,xdÞ as a random vector with d entries1 (for d≥2), we model x�Mdðn,pÞ, where Md stands for the d-dimensional multinomial

distribution, and p¼ðp1,…,pdÞ�Sd is the unknown parameters representing the population proportions. Here, Sd :¼
p�ℝd : p > 1d ¼

Pd
i¼1pi ¼1,pi >0, 8i¼1,…,d

n o
:

We assume that one observes a perturbed contingency table u¼ xþz, where z�Ndð0,σ2n IdÞ, but not the original table x. Based on the single

(perturbed) observation u, and further assuming that σ and n is known, a test of GOF aims to compare the null hypothesis H0 : p¼p0 against gen-

eral alternative H1 : p≠p0, for prespecified null probabilities p0 ¼ðp01,…,p0dÞ�Sd. A natural test statistic for the private GOF test is obtained by

treating the perturbed table u as if it were an unperturbed table x and is defined as the ‘χ2-statistic’

JUNG and WOO KWAK 3 of 18

 20491573, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sta4.658 by Seoul N

ational U
niversity, W

iley O
nline L

ibrary on [05/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



T1ðu;p0Þ :¼
Xd
i¼1

ðui�np0i Þ
2

np0i
: ð2Þ

We note that this form of private statistics has also been used in Wang et al. (2015) and Gaboardi et al. (2016). If there were no perturbation,

in which case u¼ x�Mdðn,p0Þ, it is well-known that the distribution of T1ðu;p0Þ converges to the χ2d�1 distribution, as n!∞. We show in Theo-

rem 2 that the asymptotic distribution of the statistic (2) is no longer χ2d�1 but is a weighted sum of χ21 distributions. For a d-vector p¼ðp1,…,pdÞ,
define

ffiffiffi
p

p
:¼ð ffiffiffiffiffi

p1
p

,…,
ffiffiffiffiffi
pd

p Þ, and write Dp for the diagonal matrix whose ith diagonal element is pi. For a d�d symmetric matrix Σ, λiðΣÞ stands for
the ith largest eigenvalue of Σ.

Theorem 2. Let p�Sd and σ >0 be given. For each n¼1,2,…, define the random vector u :¼ xþz, where x�Mdðn,pÞ and

z�Ndð0,σ2n IdÞ, σ2n ¼ σ2n, are independent. Then, as n!∞, T1ðu,pÞ converges in distribution to
Pd

i¼1λiðΣ1ÞZ2
i , where Z2

i s are inde-

pendent and each follows χ21 distribution, and Σ1 ¼ Id� ffiffiffi
p

p ffiffiffi
p

p > þσ2D�1
p :

Thanks to Theorem 2, the asymptotic null distribution of the test statistic (2) is specified exactly, as the matrix Σ1 ¼ Id� ffiffiffiffiffi
p0

p ffiffiffiffiffi
p0

p > þσ2D�1
p0

is

given by the null proportions p0. For an observed test statistic T1, the (asymptotic) p value of the GOF test is pðT1Þ¼P
Pd

i¼1λiðΣIÞZ2
i > T1

� �
. At sig-

nificance level α� ð0,1Þ, the null hypothesis is rejected if pðT1Þ≤ α. The computation of the p value pðT1Þ requires an evaluation of the cdf of the

scale mixture of chi-squared random variables
Pd

i¼1λiðΣÞZ2
i . Such a task is well studied in the literature; see (Davies, 1973, 1980; Liu et al., 2009).

We used the R package mgcv (Wood, 2023) in our numerical studies.

We remark that the convergence of the distribution of T1ðu;pÞ to
Pd

i¼1T1ðΣ1ÞZ2
i heavily relies on the convergence of the scaled and shifted

multinomial random vector
ffiffiffi
n

p ðp̂�pÞ :¼ ffiffiffi
n

p ðxn�pÞ to the normal distribution Ndð0,Σ0Þ where Σ0 ¼Dp�pp> . This convergence is also crucial for

the usual, non-private χ2-statistic to converge to the χ2 distribution. The χ2 approximation of the distribution of the non-private test statistic is

known to be appropriate when each npi (the expected cell count) is at least five. Since the random perturbation z is independent of x, it contrib-

utes to the statistic T1ðu,pÞ as a weighted sum of χ2 distributions, even for finite-sample sizes. This characteristic allows for the inclusion of ran-

dom perturbations while preserving the convergence properties, resulting in the fact that the asymptotic null distribution is quite accurate even

for small sample sizes. We note that private GOF test procedures proposed in Gaboardi et al. (2016) and Rogers and Kifer (2017) are equivalent

to our proposal (despite the seemingly different formulations). We emphasize that a rigorous theoretical justification of the null distribution is first

established in Theorem 2.

In many practical applications of the proposed GOF test procedure, the level μ of privacy protection or the variance σ2n may be fixed and not

varied as the sample size n changes from a dataset to another. However, one can still apply the test procedure by specifying σ2 to be σ2n=n. This

pragmatic approach allows for more accurate control of type I error, thereby avoiding the false assumption of negligible perturbation

(e.g., σ2n ¼Oð1Þ) and leading to more accurate and reliable results in practice.

2.2 | Differentially private independence tests

We now consider the situation where two categorical random variables Y1 and Y2 are observed simultaneously, where Y1 has r categories and Y2

has c categories. The pairs of ðY1,Y2Þ observed over n subjects can be summarized in the typical r�c contingency table, arranged in a r�c matrix

X, whose ði, jÞth element xij is the count of subjects belonging to the ith category for Y1 and the jth category for Y2. Deploying the typical vecðÞ
operation (stacking the columns), we write

x¼ vecðXÞ�Mrcðn,πÞ,

for some π�Src. The elements of x¼ðxijÞ are indexed by i¼1,…, r and j¼1,…,c.

Now, suppose the r� c contingency table is released privately. In particular, let ℤ represent the r� c noise matrix to be added, which is inde-

pendent of the matrix X and its (i, j)th element Zij independently follows Nð0,σ2nÞ. The privatized table U :¼Xþℤ is released. The null and alterna-

tive hypotheses of the differentially private independence test are

H0 : π¼πð2Þ �πð1Þ vs H1 : π≠πð2Þ �πð1Þ,

where π is the cell probabilities of the given contingency table, for some πð2Þ �Sc and πð1Þ �Sr , and � represents the Kronecker product. πð1Þ and

πð2Þ are row and column marginal probabilities, respectively.

4 of 18 JUNG and WOO KWAK
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We begin with various ways of defining the estimator of cell frequencies under the null hypothesis. Naive estimators of πð1Þi for i¼1,…, r and

πð2Þj for j¼1,…,c are

~πð1Þi ¼

Pc
j¼1

uij

n
, and ~πð2Þj ¼

Pr
i¼1

uij

n
:

A drawback of this naive approach is that ~πð1Þ ¼ ð~πð1Þi Þi¼1,…,r does not lie in Sr . In particular, the requirement that the sum of the proportion to one,

that is, 1 >
r ~πð1Þ ¼1 and 1 >

c ~πð2Þ ¼1, is violated. Alternatively, we consider the following estimators. The first estimator is based on the perturbed

total counts, nU ¼1 >
rc u, and is

π̂ð1ÞU ¼U1c

nU
and π̂ð2ÞU ¼U > 1r

nU
: ð3Þ

The estimators in (3) have been also used in Rogers and Kifer (2017), in which the (limiting) null distribution of the test statistic based on these

estimators is misspecified as a χ2 distribution; see Theorem 3. Alternatively, one can define

π̂ð1ÞG :¼ argmina � ℝr ,1 >
r a¼1k~πð1Þ �ak22 ¼ ~πð1Þ �1 >

r ~πð1Þ �1
r

1r ¼ ~πð1Þ � z��
nr
1r and π̂

ð2ÞG ¼ ~πð2Þ � ðncÞ�1z::1c: ð4Þ

These estimators are given by orthogonally projecting the raw probabilities ~πð1Þ onto the affine hyperplane defined by 1 >
r ~πð1Þ ¼1. Note that

Gaboardi et al. (2016) also considered a projection-based estimator, but has utilized the L2-distance minimizing projection onto Sr . Our approach

is simpler and thus allows for an application of the central limit theorem and the delta method.

Based on each of the estimators, we define two versions of chi-squared statistics: For π̂U ¼ π̂ð2ÞU � π̂ð1ÞU and π̂G ¼ π̂ð2ÞG � π̂ð1ÞG, the test statis-

tics are

χ2nðUÞ :¼
X
i, j

ðuij�nπ̂Uij Þ
2

nπ̂Uij
and ð5Þ

χ2GðUÞ :¼
X
i, j

ðuij�nπ̂Gij Þ
2

nπ̂Gij
: ð6Þ

Theorem 3. Let π̂ð1ÞU, π̂ð2ÞU, π̂ð1ÞG and π̂ð2ÞG be defined in (4) and (3), and σ >0 be given. For each n¼1,2,…, define the random vec-

tor u¼ xþz where x�Mrcðn,πÞ and z�N 0,σ2n Irc
� �

, σ2n ¼ nσ2, are independent. Then, under the null hypothesis that Y1 and Y2 are

independent when Y1 �Mr n,πð1Þ� �
, Y2 �Mc n,πð2Þ� �

(i.e., π¼πð2Þ �πð1Þ for some πð2Þ �Sc and πð1Þ �Sr ),

χ2nðUÞ)
Xrc
i¼1

λiðΣUÞZ2
i and ð7Þ

χ2GðUÞ)
Xrc
i¼1

λiðΣGÞZ2
i , ð8Þ

as n!∞, where

ΣU ¼ Irc�
ffiffiffi
π

p ffiffiffi
π

p > �AðA > AÞ�1
A > þD�1=2

π ΣU
σ,πD

�1=2
π and ð9Þ

ΣG ¼ Irc�
ffiffiffi
π

p ffiffiffi
π

p > �AðA > AÞ�1
A > þD�1=2

π ΣG
σ,πD

�1=2
π : ð10Þ

JUNG and WOO KWAK 5 of 18
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Here, A¼D
�1

2
π r, and r is the rc�ðrþc�2Þ matrix consisting of partial derivatives of π with respect to πð1Þi , i¼1,…, r�1 and

πð2Þj , j¼1,…,c�1, and is

r¼ πð2Þ � Ir�1

�1 >
r�1

	 

,

Ic�1

�1 >
c�1

	 

�πð1Þ

� �
:

The rc� rc matrices ΣU
σ,π and ΣG

σ,π in (9) and (10) depend on πð1Þ, πð2Þ and σ and the exact expression are given in Appendix A.0.3.

Since πð1Þ and πð2Þ are unknown, we can obtain the estimates Σ̂U and Σ̂G by replacing πð1Þ and πð2Þ in ΣU and ΣG with π̂ð1ÞU and π̂ð2ÞU and π̂ð1ÞG

and π̂ð2ÞG, respectively. For observed test statistics χ2nðUÞ and χ2GðUÞ, the p values of the independence tests are pðχ2nÞ¼P
Prc

i¼1λiðΣUÞZ2
i > χ

2
nðUÞ

� �
and pðχ2GÞ¼P

Prc
i¼1λiðΣGÞZ2

i > χ
2
GðUÞ

� �
, respectively. We reject the null hypothesis at level α when pðχ2nÞ< α and pðχ2GÞ< α, respectively.

Since the magnitude of the added noise can sometimes exceed the observed counts of a cell or the sample size n, the perturbed counts or

the perturbed total sample size can be negative values. This is more likely to occur under the high-privacy regime with small sample sizes. Since

the estimates of marginal probabilities are calculated based on these perturbed counts, negative marginal probabilities can be obtained, but these

values cannot be used for the test. To resolve this issue, the negative estimates are replaced with small probabilities. This is reasonable since the

negative estimates arise when the marginal values are not sufficiently large to outweigh the added noise.

2.3 | Test of equality of proportions in paired samples

In this subsection, we consider testing for equality of proportions in paired samples, based on a private contingency table. Let a 2�2 table repre-

sent the binary responses of two questions where xij and πij stand for the counts and probabilities of the ði, jÞth cell, respectively. The totals of the

ith row and the jth column in the given table are denoted by xi: and x:j, correspondingly. Similarly, the marginal probabilities are presented by πi:

and π:j for i¼1,2 and j¼1,2.

When π1: and π:1 are similar, the same holds for π12 and π21 due to the relationships π1: ¼ π11þπ12 and π:1 ¼ π11þπ21. If one wants to test

the homogeneity of approval for the two questions, the null hypothesis is H0 : πi: ¼ π:i , which is equivalent to H0 : π12 ¼ π21.

Now, suppose that the perturbed table is transformed to the vector, and the vector is expressed as u¼ xþz where

x¼ x12,x21,x11þx22ð Þ�Mult n,πð Þ, z¼ z12,z21,z11þ z22ð Þ, and zij �Nð0,σ2nÞ. Then,

u�npffiffiffi
n

p )N 0,Σ0þσ2n
n
C

	 

, whereC¼

1 0 0

0 1 0

0 0 2

2
64

3
75:

The test statistic for the test of equality of proportions is defined as

tnðuÞ¼ u12�u21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂ ∗ þ2σ2n

p , ð11Þ

where n̂ ∗ ¼ u12þu21 is an estimate of n ∗ for the unknown π1 under the null hypothesis.

Theorem 4. Let σ >0 be given and σn ¼ σ
ffiffiffi
n

p
. For each n¼1,2,…, define the random vector u¼ xþz where

x¼ x12,x21,x11þx22ð Þ�Mult n,πð Þ, and zij �Nð0,σ2nÞ given that π¼ðπ12,π21,π0Þ and z¼ z12,z21,z11þ z22ð Þ. Under the null hypothesis

that π12 ¼ π21, the limiting distribution of the private test statistic tnðuÞ in (11) is Nð0,1Þ.

For an observed test statistic tn, the p value of the test of equality of proportions in paired samples is pðtnÞ¼1�ΦðtnðuÞÞ. The null hypothesis

is rejected at level α when pðtnÞ< α.

3 | SIMULATIONS

In this section, we investigate the type I error rate and the power of the private tests discussed in Section 2. The performances of our proposal

are compared with close competitors including Gaboardi et al. (2016) and Rogers and Kifer (2017). We employ the continuous Gaussian distribu-

tion to generate the noise although one may consider using the discrete noises from the discrete Laplace distribution (Ghosh et al., 2009) or the
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discrete Gaussian distribution (Canonne et al., 2022) as used in Nikolov et al. (2016) and Haney et al. (2021). However, the discrete Laplace noise

cannot be used for μ-GDP (Kim et al., 2023), and the results of the discrete Gaussian noise are presented in the Supporting Information. In short,

the simulation results do not show a significant difference between test performances under the (continuous) Gaussian and discrete Gaussian

perturbations.

The type I error rate and power of the tests depend on various factors, including the sample size n, privacy parameter μ (or the amount σ of

the perturbation) and the effect size, which measures a difference between the null distribution and the alternative distribution. To measure the

effect size, Cohen's ω (Cohen, 1988) is used, which is defined as

ω¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd
i¼1

pi�p0i
� �2

p0i

vuut

where pi and p0i represent the probability of the ith cell in the alternative and null distribution, respectively. Figure 1 provides examples of multi-

nomial distributions for d¼20 cells and their effect sizes ω¼0,0:3,0:6, compared to the global null distribution, putting equal probabilities to

each cell.

Throughout, we will investigate the performances of the proposed private test procedures under two asymptotic scenarios:

• High-privacy regime, in which for a given σ, the variance σ2n ¼ σ2n increases as the sample size increases, thus resulting in higher privacy

(μ�1=
ffiffiffi
n

p
) as n increases.

• Fixed level of privacy. For a fixed level μ, the variance of the mechanism is calibrated to satisfy μ-GDP, for each sample size n.

3.1 | Type I error

Figure 2 displays the type I error rates of the private GOF test, independence test and test of equality of proportions, proposed in Section 2,

under various scenarios. Overall, our proposal controls the occurrence of type I errors under the given significance level.

The outcomes are from the fixed σ scenario (upper plots in Figure 2) and the fixed μ scenario (lower plots in Figure 2). Based on the results of

the fixed σ case, stronger privacy (indicated by smaller μ values) is guaranteed as the sample size increases. For instance, when the sample size is

100, μ is 0.14, while μ becomes less than 0.1 when the sample size exceeds 500. The lower plots in Figure 2 show that smaller σ is needed to

achieve the same privacy guarantee μ with a larger sample size.

In Figure 2 and throughout, T1 denotes the results of private GOF test based on (2) while PrivG is the results of the test proposed by

Gaboardi et al. (2016), and Unprj and Prj are the results of the test suggested by Rogers and Kifer (2017). χ2G and χ2n represent the results of pri-

vate independence tests (7) and (8), respectively. tn is the result of the private test of equality of proportions in paired samples using test statistic

in (11).

For the private GOF test, the test statistics of T1 and PrivG are the same as expressed in the quadratic form of vectors of perturbed counts

asymptotically following multivariate normal distribution. The limiting distributions of both test statistics rely on eigenvalues of the covariance

F IGURE 1 Example of the population distributions when the number of categories is 20. Blue, red and green bars indicate the multinomial
distributions with effect size ω 0, 0.3 and 0.6, respectively.
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matrices of the perturbed counts. That is, the test statistics and the limiting null distribution of PrivG and T1 are equivalent, as noted in

Section 2.1. As a result, the test results are the same in our simulation setting. Unprj defines test statistic as n�1 u�npð Þ > M u�npð Þ where M is

the inverse of the covariance matrix of the asymptotic distribution of n�1=2 u�npð Þ which is the multivariate normal distribution with mean zero

and covariance matrix D ffiffi
p

p Σ1D ffiffi
p

p . Prj projects ðu�npÞ by P¼ Id�d�111> and uses the test statistic n�1 u�npð Þ > PMP u�npð Þ. T1 converges to

the quadratic of multivariate normal random vector and the test statistic of Unprj is a scaled version of T1. Thus, the limiting distribution of the

statistic Unprj is χ2d , and it is the same as T1. For a very small σ value, that is, very weak privacy protection is assumed, Prj is suggested. Each

test statistic follows χ2d and χ2d�1 since it is known that y > Vy follows χ2k when y�Nð0,ΣÞ, VΣ is idempotent, and rankðVÞ¼ k by Driscoll (1999).

As a result, in the private GOF test, the type I error rates of these tests are the same.

Plots in the second column of Figure 2 show the type I error of two differentially private independence tests based on two test statistics

χ2nðUÞ and χ2GðUÞ in Theorem 3. Other results PrivG, Unprj and Prj are obtained from Gaboardi et al. (2016) and Rogers and Kifer (2017),

respectively. The test statistics for these methods are the same with the private GOF test, except that p is replaced by estimates. When the sam-

ple size is small the results are not provided as they do not draw conclusions when the noisy cell count or the expected count of any cell is too

small. We treat no decision as not rejecting the null hypothesis which results in small type I error rates. In Figure 2, there are zero type I error rates

when the sample size is smaller than 2000. Moreover, under the fixed σ setting, the type I error of PrivG increases as the sample size increases.

The Prj and Unprj have zero type I errors like PrivG does, but the rates get stable with more samples. However, for fixed μ scenario, the type I

error rates of PrivG, Prj and Unprj are not controlled even when the sample size is 10,000. The differences can be caused by the estimation of

marginal probabilities and the estimation of the covariance matrix. For PrivG independence test, the test statistic looks similar with χ2G, but the

guessed covariance of the limiting distribution is not the same as in Theorem 3. As a result, the type I error of the PrivG test is not controlled.

Moreover, the estimator obtained from the optimization is not easy to show the characteristics under the asymptotic situation. For the private

independence tests of Unprj, the test statistic is the same as that of the GOF test, except for replacing the probabilities with their estimates.

However, in this case, estimated M is not the inverse of the covariance matrix of the limiting distribution of n�1=2ðu�npÞ, leading to a failure to

converge to the χ2 distribution. The same issue occurs with the test statistic of Prj. Incorrect estimation of the covariance matrix prevents con-

vergence to the χ2 distributions with the corresponding degrees of freedom.

In the simulation results, we observe that the type I error rates of our methods are controlled for every σ we have tested, for all four test pro-

cedures proposed unless the n is very small. In particular, the privacy independence tests, using χ2G and χ2n , require n≥1000 as they require estima-

tion of unknown true proportions in the limiting null distribution; the other two tests (T1 and tn) control type I error rates for all sample sizes and

all values of privacy parameters.

F IGURE 2 Type I error of the private tests according to the sample size increases are depicted. From the first column to the last, the results
of GOF, independence and test of equality of proportions in paired samples are shown. In the first row, σ¼1, and in the second row, μ¼0:141
(σn ¼10). For the GOF test, there are 20 categories, and for the independence test, r�c¼3�15. The shaded band represents two standard
errors of the empirical type I error.
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3.2 | Power

To assess the power of the private tests, we simulate different effect sizes. For the GOF and independence tests, we consider moderate (ω¼0:3)

and large (ω¼0:6) effect sizes while the test of equality of proportions in paired samples uses small (ω¼0:1) and moderate effect sizes are used.

The results of the private GOF test are presented in Figure 3, the independent test results are shown in Figure 4 and the test of equality of

proportions in paired samples results are displayed in Figure 5. We observe that the power of these tests increases with larger sample sizes and

effect sizes. However, when compared to non-private tests, it becomes evident that the private tests require a larger sample size to approach the

power of the non-private counterparts.

The private GOF test results based on T1, PrivG, Unprj and Prj are presented in Figure 3. These results are indistinguishable, as the type I

error results shown in Figure 2. Even in cases with a moderate effect size, differentially private GOF tests exhibit comparable power to the non-

private test when the sample size is around 2000. The last plot in Figure 3 represents the fixed μ case, and it shows a similarity to the fixed

σ case.

For the power of the private independence tests (in Figure 4), the higher number of cells, compared to the private GOF tests, and the influ-

ence of noise on estimated marginal probabilities cause the power to converge more slowly to the non-private tests as the sample size increases.

Other test results are omitted from the figure as they do not control the type I error rate under the given σ (or μ) and sample sizes. Furthermore,

there is no significant difference between χ2G and χ2n in the simulations.

For the private test of equality of proportions for paired samples (in Figure 5), the power converges to that of the non-private tests with a

much smaller sample size compared to the private GOF test under the same conditions (in the second and third plots). Therefore, the power of

the test, assuming a smaller effect size ω¼0:1 is provided in the first plot. Note that the scale of the x-axis in the first plot is different from that

in the second or last plots in the figure. The non-private test also requires a larger sample size when the effect size is small, as opposed to the

moderate effect size ω¼0:3 in the second and last plots in Figure 5. The private test converges to the non-private test power when the sample

size is about 8000 while others achieve this at a sample size of approximately 500.

F IGURE 3 Power of the GOF test results when there are 20 categories. It illustrates the impact of increasing the sample size with σ¼0:5
(in the first and second plots) and μ¼0:141 (in the last plot) with a large effect size of ω¼0:6 (in the second plot) and moderate effect size of ω¼
0:3 (in the first and last plots)

F IGURE 4 Power of the independence test under the null hypothesis of uniform distribution is displayed for a dimension of r¼3 and c¼15
as sample size increases. The plots show the power of the test with σ¼0:5 (in the first and second plots) and μ¼0:141 (in the last plot),
considering both a large effect size of ω¼0:6 (in the second plot) and a moderate effect size of ω¼0:3 (in the first and last plots)
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The simulation results indicate that the private tests require larger sample sizes to achieve the desired type I error rate and match the power

of non-private tests. This need for a larger sample size is particularly evident with increased dimensions, as the total noise level rises.

Additionally, Figures 2 and 4 reveal that when the sample size is small, the private test results may lack reliability, with a low proportion of

rejections regardless of whether the null hypothesis is true or not. However, as the sample size increases, the test results are similar to those

of non-private tests. Determining an exact sample size for reasonable power solely based on privacy guarantees is challenging, as it depends on

both known factors (the dimensions of data and privacy level) and unknown factors (effect size and population distribution).

3.3 | Real data analysis

In this section, we apply the private independence test to a real dataset from the ATUS. The dataset comprises two variables: PEEDUCA (highest

level of school) and HEFAMINC (household income) from the ATUS Current Population Survey (ATUS-CPS) for the year 2021. The HEFAMINC var-

iable contains 16 categories, with Category 1 representing households with less than $5000 of income and Category 16 representing households

with over $150,000 of income. The PEEDUCA variable also has 16 categories, covering educational attainment from less than first grade to a doc-

toral degree. However, for the purpose of the independence test, it has been grouped into three broader categories based on diploma achieve-

ment: ‘less than high school’, ‘high school’ and ‘more than high school’.
As depicted in Figure 6, the differences become more significant at higher income levels (category greater than 14) when the education level

is higher. The population ratios for less than high school, high school and more than high school are 15%, 26% and 59%, respectively. The ratios

serve as the basis for generating samples for each sample size in the independence test. The sample data are randomly extracted from the dataset,

and the power of the test is computed based on the generated samples. Additionally, we consider test results without noise to compare the pri-

vate and non-private tests. The null hypothesis is that the HEFAMINC is independent of PEEDUCA.

F IGURE 6 Distributions of household income in the American Time Use Survey 2021 based on the highest educational attainment. The left
plot displays the ratios of each category across corresponding education levels while the right plot shows the frequencies of each category within
corresponding education levels.

F IGURE 5 Power of the differentially private test of equality of proportions in paired samples is depicted as the sample size increases. Each
plot illustrates the power of the test when σ¼0:5 (in the first and second plots) and μ¼0:141 (in the last plot) with a small effect size of ω¼0:1
(in the first plot) and a moderate effect size of ω¼0:3 (in the second and last plots)
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Figure 7 shows the results of applying differentially private independence tests to the ATUS dataset. The non-private test result concludes

that the house income is not independent of the area. When σ¼0:4, the private test requires more than 26,000 samples to yield a similar

result to the non-private test. However, for μ¼0:141 (right plot in Figure 7), which uses smaller σ than 0.4 for any sample size greater than 2000,

the private test results are the same as the non-private test when the sample size is greater than 5000.

4 | DISCUSSION

In this study, we investigated the asymptotic null distribution of the private test statistics based on χ2 statistic under the high-privacy regime.

Under the assumption that the curator provides perturbed tables, our goal is to find the null distribution of the differentially private GOF and

independence tests based on χ2 statistics. We demonstrated that the private test statistics can be expressed in quadratic forms of the random

vectors that follow a multivariate normal distribution as n!∞, and the limiting null distribution for the private test statistics is the weighted sum

of the χ2 distributions. The weights are determined by the eigenvalues of the covariance matrix of the random vectors and prespecified σ2.

We believe that the impact of the noise is not significantly reduced as the sample size increases. It would be better to acknowledge the

impact of the noise by adjusting the noise variance σn depending on the sample size n. Then, the privacy parameter μ for GDP, derived as Δ=σn,

becomes inherently linked to the sample size n. Both simulation experiments and application to real data reveal that type I errors and test powers

become stable and approach the performance of non-private tests as the sample size grows. These results indicate that by embracing the pres-

ence of noise and setting noise variance accordingly, we can attain a stronger privacy guarantee with larger sample sizes, facilitating the successful

execution of private tests. Since the asymptotic test requires a large-sample size, the test results may not work well on smaller sample sizes. How-

ever, as demonstrated in simulation experiments, the test performs appropriately for moderately large-sample sizes n>200. This fast convergence

is in part due to the use of Gaussian noise, resulting in the χ2 mixture for the null distribution.

For this study, we assume that n, σ and a perturbed table are provided by the curators (or data distributors). However, it's worth noting that

they may prefer perturbed tables to exhibit a total of n instead of the sum of noises and n. Under this consideration, conducting private GOF and

independence tests remains an intriguing challenge and direction for future exploration.
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ENDNOTE
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F IGURE 7 Power of the private independence tests for the household income (HEFAMINC) and educational attainment (PEEDUCA) variables
in ATUS-CPS data when σ¼0:4 and μ¼0:141, with varying sample sizes.
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APPENDIX A: PROOFS AND TECHNICAL DETAILS

A.0.1 | Proof of Theorem 2

Proof of Theorem 2. The result of T1ðu;pÞ can be derived as

T1ðu;pÞ ¼
Xd
i¼1

ui�npið Þ2
npi

¼
Xd
i¼1

n p̂i�piþ zi
n

� �2
pi

¼ y > D�1
p þOp n�

1
2

� �� �
y¼ y > D�1

p y,

where p̂i ¼ xi
n and y¼ ffiffiffi

n
p

p̂�pþ z
n

� �
. Then, y)Ndð0,Dp�pp > þσ2IdÞ.

T1ðu,pÞ converges in distribution to
Pd

i¼1λiðΣ1ÞZ2
i , where Z2

i s are independent and each follows χ21 distribution. The proof is

completed by using a classical result on the convergence of distribution and the quadratic forms; see Theorems 14.3-6 and 14.3-7

in Bishop et al. (2007). □

A.0.2 | Proof of Theorem 1

For the proof of the limiting distribution of the test statistics, we will exploit the fact that the data x¼ vecðXÞ and the noise z¼ vecðℤÞ are inde-

pendent. Write for i¼1,…, r, j¼1,…,c, zi� ¼
Pc

j¼1zij, z�j ¼
Pr

i¼1zij, z�� ¼
Pr

i¼1

Pc
j¼1zij, and observe that

n�
1
2zij �Nð0,σ2Þ, n�1

2zi� �Nð0,cσ2Þ, n�1
2z�j �Nð0,rσ2Þ, ðA1Þ

and

n�
1
2z�� �Nð0, rcσ2Þ:
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We next list some classical results on the multinomially distributed random matrix X and its associated χ2-statistic. Note that for π̂ð1Þ ¼X1c=n and

π̂ð2Þ ¼X > 1r=n, the central limit theorem gives

ffiffiffi
n

p
π̂ð1Þ �πð1Þ

� �
)Nr 0,Dπð1Þ �πð1Þðπð1ÞÞ >

� �
and ðA2Þ

ffiffiffi
n

p
π̂ð2Þ �πð2Þ

� �
)Nc 0,Dπð2Þ �πð2Þðπð2ÞÞ >

� �
, ðA3Þ

as n!∞. In particular, for i¼1,…, r, j¼1,…,c,

π̂ð1Þi ¼ πð1Þi þOp n�
1
2

� �
and π̂ð2Þj ¼ πð2Þj þOp n�

1
2

� �
: ðA4Þ

The following result is excerpted from the proof of Theorem 14.8-4 of Bishop et al. (2007).

Lemma 1 Bishop et al. (2007). For p̂¼ x=n and π̂¼ π̂ð2Þ � π̂ð1Þ,
ffiffiffi
n

p
D
�1

2
π p̂� π̂ð Þ)Nrc 0,Dπ,Að Þ as n!∞, where

Dπ,A ¼ Irc�
ffiffiffi
π

p ffiffiffi
π

p > �AðA > AÞ�1
A > . Here, A¼D

�1
2

π r, and r is the rc�ðrþc�2Þ matrix consisting of partial derivatives of π with

respect to πð1Þi , i¼1,…, r�1 and πð2Þj , j¼1,…,c�1, and is expressed as

r¼ πð2Þ � Ir�1

�1 >
r�1

	 

,

Ic�1

�1 >
c�1

	 

�πð1Þ

� �
,

as defined in Theorem 3.

To further simplify, we collect the terms with order Opð1Þ and Op n�
1
2

� �
and use the Op notation for the terms smaller than n�

1
2. For this pur-

pose, the results of (A1) and (A4) are extensively used in the following calculation. The cross-product term rewrites to

π̂ð1Þi þn�1zi�
� �

π̂ð2Þj þn�1z�j
� �

¼ π̂ijþ πð1Þi þOp n�
1
2

� �� �
n�1z�jþn�1zi� πð2Þj þOp n�

1
2

� �� �
þOp n�1

� �
,

¼ π̂ijþπð1Þi n�1z�jþn�1zi�π
ð2Þ
j þOp n�1

� �
,

ðA5Þ

and the ‘error term’ becomes

n
nþ z��

¼ 1
1þn�1z��

¼1�n�1z�� þOp n�1
� �

: ðA6Þ

Moreover, we can write

π̂ijn
�1z�� ¼ πijþOp n�

1
2

� �� �
n�1z�� ¼ πijn

�1z�� þOp n�1
� �

: ðA7Þ

Proof. Note that

χ2nðUÞ¼
X
i, j

n p̂ijþn�1zij� π̂Uij

� �2

π̂Uij
,

where

π̂Uij ¼ π̂ð1Þi þn�1zi�
� �

π̂ð2Þj þn�1z�j
� � 1

ð1þn�1z��Þ2
:
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Utilizing the expansion 1
ð1þxÞ2 ¼1�2xþOðx2Þ and (A5)–(A7),

π̂Uij ¼ π̂ijþπð1Þi n�1z�jþn�1zi�π
ð2Þ
j �2πijn

�1z�� þOpðn�1Þ: ðA8Þ

We have

p̂Uij � π̂Uij ¼ðp̂ij� π̂ijÞþn�1ẑπij þOp n�1
� �

, ðA9Þ

where

ẑπij ¼ zijþπð1Þi z:jþπð2Þj zi:�2πijz::

In addition, by (A8),

π̂Uij ¼ πijþOp n�
1
2

� �
:

From (A9),

χ2nðUÞ ¼
X
i, j

ðuij�nπ̂Uij Þ
2

nπ̂Uij

¼
X
i, j

nðp̂ijþn�1zij� π̂Uij Þ
2

π̂Uij

¼
X
i, j

ffiffiffi
n

p ðp̂ij� π̂ijÞþn�
1
2ẑπij þOp n�

1
2

� �� �2

πijþOpðn�1
2Þ

¼wG >
n D�1

π þOp n�
1
2

� �� �
wG

n ,

ðA10Þ

where wG
n ¼

ffiffiffi
n

p ðp̂� π̂Þþn�
1
2ẑπþOpðn�1

2Þ. One can check that

n�
1
2ẑπ ¼ ðIc�Dπð2ÞJcÞ�ðIr �Dπð1ÞJrÞþðDπð2ÞJcÞ� ðDπð1ÞJrÞð Þn�1

2z,

and n�
1
2ẑπ �N 0,ΣU

σ,π

� �
where

ΣU
σ,π ¼ σ2 A1 �A2þA3�A4½ � A1 �A2þA3�A4½ � > , ðA11Þ

and A1–A4 are defined as

A1 ¼ðIc�Dπð2ÞJcÞ, ðA12Þ

A2 ¼ðIr �Dπð1ÞJrÞ, ðA13Þ

A3 ¼Dπð2ÞJc, ðA14Þ

A4 ¼Dπð1ÞJr : ðA15Þ

Thus, together with Lemma 1, as n!∞,

D�1=2
π wG

n )Nrcð0,ΣUÞ,
where

ΣU ¼ Irc�
ffiffiffi
π

p ffiffiffi
π

p > �AðA > AÞ�1
A > þD�1=2

π ΣU
σ,πD

�1=2
π :
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So, we have

χ2nðUÞ)
Xrc
i¼1

λiðΣUÞZ2
i :

□

Proof. Now,

χ2GðUÞ¼
X
i, j

ðuij�nπ̂Gij Þ
2

nπ̂Gij
,

where

π̂ð1ÞG ¼ ~πð1Þ �1 >
r ~πð1Þ �1

r
1r ¼ ~πð1Þ � z��

nr
1r , ðA16Þ

π̂ð2ÞG ¼ ~πð2Þ �1 >
c ~πð2Þ �1

c
1c ¼ ~πð2Þ � z��

nc
1c and

π̂G ¼ π̂ð2ÞG � π̂ð1ÞG:
ðA17Þ

From (A16) and (A17),

π̂Gij ¼ π̂ð1ÞGi π̂ð2ÞGj

¼ ~πð1Þi � z::
nr

� �
~πð2Þj � z::

nc

� �

¼ π̂ð1Þi þn�1zi:� z::
nr

� �
π̂ð2Þj þn�1z:j� z::

nc

� �

¼ π̂ð1Þi þn�1zi:� z::
nr

� �
π̂ð2Þj þ π̂ð1Þi þn�1zi:� z::

nr

� �
n�1z:j� π̂ð1Þi þn�1zi:� z::

nr

� � z::
nc

¼ π̂ð1Þi π̂ð2Þj þn�1zi:π̂
ð2Þ
j � z::

nr
π̂ð2Þj

� �
þ π̂ð1Þi n�1z:jþn�1zi:n�1z:j� z::

nr
n�1z:j

� �
� π̂ð1Þi

z::
nc

þn�1zi:
z::
nc

� z::
nr

z::
nc

� �

¼ π̂ijþn�1zi:π̂
ð2Þ
j �ðnrÞ�1z::π̂

ð2Þ
j þ π̂ð1Þi n�1z:jþn�2zi:z:j�n�2r�1z::z:j�ðncÞ�1π̂ð1Þi z::�n�2c�1zi:z::þn�2ðrcÞ�1z2::

¼ π̂ijþn�1ðzi:� r�1Pr
i¼1

zi:Þπ̂ð2Þj þn�1ðz:j�c�1Pc
j¼1

z:jÞπ̂ð1Þi þn�2zi:z:j�n�2r�1z::z:j�n�2c�1zi:z::þn�2ðrcÞ�1z2::

¼ π̂ijþn�1ðzi:� r�1Pr
i¼1

zi:Þπ̂ð2Þj þn�1ðz:j�c�1Pc
j¼1

z:jÞπ̂ð1Þi þOpðn�1Þ

¼ π̂ijþn�1ðz:j� rZÞπ̂ð1Þi þn�1ðzi:�cZÞπ̂ð2Þj þOpðn�1Þ,

where Z¼
P

i,j
zij

rc ¼ z::
rc. From (A4), we have

π̂ij þn�1ðz:j� rZÞπ̂ð1Þi þn�1ðzi:�cZÞπ̂ð2Þj þOpðn�1Þ
¼ π̂ijþn�1ðz:j� rZÞ πð1Þi þOpðn�1

2Þ
� �

þn�1ðzi:�cZÞ πð2Þj þOpðn�1
2Þ

� �
þOpðn�1Þ

¼ π̂ijþn�1ðz:j� rZÞπð1Þi þn�1ðzi:�cZÞπð2Þj þOpðn�1Þ:

Now,

n�1uij� π̂Gij ¼ p̂ijþn�1zij� π̂ijþn�1ðz:j� rZÞπð1Þi þn�1ðzi:�cZÞπð2Þj þOpðn�1Þ
� �

¼ðp̂ij� π̂ijÞþn�1 zij� z:jπ
ð1Þ
i � zi:π

ð2Þ
j þ rZπð1Þi þcZπð2Þj

� �
þOpðn�1Þ

¼ ðp̂ij� π̂ijÞþn�1ẑπ,Gij þOp n�1
� �

,

where

ẑπ,Gij ¼ zij�πð1Þi z:j�πð2Þj zi:þ rπð1Þi Zþcπð2Þj Z:
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Then,

u�nπ̂G ¼ nðp̂� π̂Þþn�1ẑπ,GþOpðn�1
2ÞÞ,

where

ẑπ,G ¼ ðIc�Dπð2ÞJcÞ� ðIr �Dπð1ÞJrÞ�ðDπð2ÞJcÞ�ðDπð1ÞJrÞþð1c�πð1ÞÞ1 >
rc

1
c
þðπð2Þ �1rÞ1 >

rc
1
r

	 

z:

So,

χ2GðUÞ ¼P
i, j

ðuij�nπ̂Gij Þ
2

nπ̂Gij

¼ðwG
n Þ

>
D�1

π þOp n�
1
2

� �� �
wG

n ,

where wG
n ¼

ffiffiffi
n

p ððp̂� π̂Þþn�
1
2ẑπ,GþOpðn�1

2Þ. Thus, together with Lemma 1, as n!∞,

D
�1

2
π wG

n )Nrcð0,ΣGÞ,

where

ΣG ¼ Irc�
ffiffiffi
π

p ffiffiffi
π

p > �AðA > AÞA > þD
�1

2
π ΣG

σ,πD
�1

2
π ,

ΣG
σ,π ¼ σ2 A1�A2�A3 �A4þA5þA6½ � A1�A2�A3�A4þA5þA6½ � > : ðA18Þ

A1–A4 are defined in (A12)–(A15), and

A5 ¼ð1c�πð1ÞÞ1 >
rc c

�1, ðA19Þ

A6 ¼ð1r �πð2ÞÞ1 >
rc r

�1: ðA20Þ

Thus,

χ2GðUÞ)
Xrc
i¼1

λiðΣGÞZ2
i :

□

A.0.3 | Details of ΣU
σ,π and ΣG

σ,π

The expansions of ΣU
σ,π (A11) and ΣG

σ,π (A18) in Appendix A.0.2 share common terms which facilitate the computation of the covariance matrices.

Let A1–A6 be from (A12)–(A15) and (A19) and (A20). We have ðA�BÞðC�DÞ¼ ðACÞ�ðBDÞ and ðA�BÞ > ¼A > �B > .

1. ΣU
σ,π in (A11) can be expressed as

ΣU
σ,π ¼ σ2 ðIc�Dπð2ÞJcÞ� ðIr �Dπð1ÞJrÞþðDπð2ÞJcÞ�ðDπð1ÞJrÞ½ �

ðIc�Dπð2ÞJcÞ� ðIr �Dπð1ÞJrÞþðDπð2ÞJcÞ�ðDπð1ÞJrÞ½ � >
¼ σ2 A1�A2þA3 �A4½ � A1�A2þA3 �A4½ � >

¼ σ2 A1�A2ð Þ A1�A2ð Þ > þ A1�A2ð Þ A3�A4ð Þ > þ A3�A4ð Þ A1 �A2ð Þ > þ A3 �A4ð Þ A3�A4ð Þ >
h i

¼Σσ,πþσ2 A1�A2ð Þ A3�A4ð Þ > þ A3�A4ð Þ A1 �A2ð Þ > þ A3 �A4ð Þ A3 �A4ð Þ >
h i

¼Σσ,πþσ2 A1A
>
3

� �� A2A
>
4

� �þ A3A
>
1

� �� A4A
>
2

� �þ A3A
>
3

� �� A4A
>
4

� �
 �
,

where Σσ,π ¼ σ2 A1 �A2ð Þ A1 �A2ð Þ > ¼ σ2 A1A
>
1

� �� A2A
>
2

� �
.
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2. ΣU
σ,π in (A18) can be expressed as

ΣG
σ,π ¼ σ2 ðIc�Dπð2ÞJcÞ�ðIr �Dπð1ÞJrÞ�Dπð2ÞJc �Dπð1ÞJr þð1c�πð1ÞÞ1 >

rc c
�1



þð1r �πð2ÞÞ1 >

rc r
�1
� ðIc�Dπð2ÞJcÞ�ðIr �Dπð1ÞJrÞ�Dπð2ÞJc�Dπð1ÞJr½

þð1c�πð1ÞÞ1 >
rc c

�1þð1r �πð2ÞÞ1 >
rc r

�1
�>

¼ σ2 A1�A2�A3 �A4þA5þA6½ � A1�A2�A3�A4þA5þA6½ � >
¼Σσ,π

þσ2 A3A
>
3

� �� A4A
>
4

� �� A1A
>
3

� �� A2A
>
4

� �� A3A
>
1

� �� A4A
>
2

� �Þ

þA5ðA >

1 �A >
2 ÞþA6ðA >

1 �A >
2 Þ�A5ðA >

3 �A >
4 Þ�A6ðA >

3 �A >
4 Þ

þðA1 �A2ÞA >
5 �ðA3�A4ÞA >

5 þðA1 �A2ÞA >
6 �ðA3�A4ÞA >

6

þA5A
>
6 þA6A

>
5 þA5A

>
5 þA6A

>
6

�
:

A.0.4 | Proof of Theorem 4

Let the 2�2 table be perturbed and vectorized as u¼ xþz, where x¼ x12,x21,x11þx22ð Þ�Mult n,πð Þ, z¼ z12,z21,z11þ z22ð Þ, zij �Nð0,σ2nÞ for

i¼1,2 and j¼1,2. Based on the limiting distribution of the multinomial random variables, we have

u�npffiffiffi
n

p )N 0,Σ0þσ2n
n
C

	 

, whereC¼

1 0 0

0 1 0

0 0 2

2
64

3
75:

Under the null hypothesis that x12 ¼ x21 ¼ nπ, the private test statistic tn is defined as

tnðuÞ¼ b > uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b > nΣþσ2nC

� �
b

q ¼ u12�u21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nπ1þ2σ2n

p ¼ u12�u21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n ∗ þ2σ2n

p ,

where b¼ð1, �1,0Þ. We have tn )Nð0,1Þ since

b > uffiffiffi
n

p )N 0,b > Σ0þσ2n
n
C

	 

b

	 

¼N 0,2π1þ2σ2n

n

	 

:
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