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Motivated by the analysis of torsion (dihedral) angles in the backbone
of proteins, we investigate clustering of bivariate angular data on the torus
[−π,π) × [−π,π). We show that naive adaptations of clustering methods,
designed for vector-valued data, to the torus are not satisfactory and propose
a novel clustering approach based on the conformal prediction framework.
We construct several prediction sets for toroidal data with guaranteed finite-
sample validity, based on a kernel density estimate and bivariate von Mises
mixture models. From a prediction set built from a Gaussian approximation
of the bivariate von Mises mixture, we propose a data-driven choice for the
number of clusters and present algorithms for an automated cluster identifi-
cation and cluster membership assignment. The proposed prediction sets and
clustering approaches are applied to the torsion angles extracted from three
strains of coronavirus spike glycoproteins (including SARS-CoV-2, conta-
gious in humans). The analysis reveals a potential difference in the clusters
of the SARS-CoV-2 torsion angles, compared to the clusters found in torsion
angles from two different strains of coronavirus, contagious in animals.

1. Introduction. The structure of a protein is often summarized by the torsion (dihedral)
angles formed along the backbone of the protein (Dill and MacCallum (2012)). A standard
visual representation of the torsion angles is given by the Ramachandran plot in which the
sequence of (φ,ψ) torsion angles extracted from the backbone of a protein is plotted on
[−π,π)×[−π,π) (Figure 1). Due to the unique (circular) challenges in the relatively simple
data structure and to its importance in structural analysis of proteins and RNA, there have
been a number of endeavors on density estimation, clustering and dimension reduction of data
on the torus (Mardia, Taylor and Subramaniam (2007), Mardia et al. (2008, 2012), Eltzner,
Huckemann and Mardia (2018), Gao et al. (2018), Lennox et al. (2009), Shapovalov, Vucetic
and Dunbrack Jr. (2019), Nodehi et al. (2021)). In particular, clusters in the torsion angles
have been interpreted as local structures of the backbone of a protein which determine the
protein’s functions (Berg, Tymoczko and Stryer (2002)).

The circular nature of angles leads that the bivariate angle (φ,ψ) is on the torus, which
may be embedded as an intrinsically two-dimensional manifold in R

3, and can be cut-and-
flattened as a square T

2 = [−π,π) × [−π,π) on R
2 (cf. Figure 1, Eltzner, Huckemann and

Mardia (2018)). Therefore, a point (−π,−π) is closer to (π −ε,π −ε) than (−π +2ε,−π +
2ε) for some ε > 0. Due to this geometric constraint, as we shall see in Section 3.1, most off-
the-shelf clustering methods are not applicable, at least not without a proper adaptation.

In this article we propose a novel approach for clustering on the torus, based on the confor-
mal prediction framework (Lei, Robins and Wasserman (2013), Lei et al. (2018), Vovk, Gam-
merman and Shafer (2005)). The conformal prediction framework is a method of constructing
distribution-free prediction sets with finite-sample validity, but there has been no attempt of
applications to circular variables in the literature. Following Lei, Rinaldo and Wasserman
(2015), Lei, Robins and Wasserman (2013), we construct estimators of prediction sets for the
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FIG. 1. A Ramachandran plot or a (φ,ψ)-plot of the SADS-CoV protein structure (Yu et al. (2020)).

protein torsion angles, based on a kernel density estimate on the torus (Di Marzio, Panzera
and Taylor (2011)) and a finite mixture of bivariate von Mises distributions (Mardia, Taylor
and Subramaniam (2007), Mardia et al. (2012)). The conformal prediction sets for toroidal
data are described in Section 2; see Figure 2 for the prediction sets obtained from the data
displayed in Figure 1. We construct several variants of prediction sets, based on which the
proposed clustering of toroidal data is defined.

We propose to identify clusters by the connected components of prediction sets. We say
A1, . . . ,AK are connected components of (a closed set) A ⊂ T

2 if A is the disjoint union

FIG. 2. Top row: Prediction sets at level 90% are overlaid with the data displayed in Figure 1; see equations (5)
and (10) in Section 2. Bottom row: Cluster memberships assigned by Ae (left) and Ao (right); see equations (11)
and (12) in Section 3.
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of Ak’s and each Ak cannot be divided into two disjoint nonempty closed sets. For a careful
choice of conformity score (from which the prediction set Ĉn is estimated), the connected
components are simply unions of ellipses, and an automated identification of clusters is pos-
sible. The resulting number K of clusters depends on the choice of the level of the prediction
set and the hyperparameter used in fitting the mixture model. The problem of choosing K

is then transformed into the problem of setting the level and the hyperparameter which are
chosen by striking a balance between the desired coverage (the higher the better) and the
volume of the prediction set (the smaller the better). We propose and compare two methods
of cluster membership assignment; see Section 3 for the proposed approaches of clustering.
Figure 2 demonstrates the results of the proposed clustering in which three major clusters are
identified.

The data shown in Figures 1 and 2 are torsion angles from Cryo-EM structures of SADS-
CoV spike glycoproteins, previously analyzed in Yu et al. (2020). The swine acute diarrhea
syndrome coronavirus (SADS-CoV) is a strain of coronavirus and is known to be struc-
turally similar to Rhinolophus bat coronavirus (HKU2) (Gong et al. (2017)). We compare the
clusters of SADS-CoV torsion angles with those of HKU2 and the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), a variant of RNA coronavirus (Walls et al. (2020))
which is the cause of the COVID-19 pandemic (Chan et al. (2020), Gorbalenya et al. (2020)).
Section 4.1 is devoted to analyze the torsion angles from these coronavirus proteins, and we
reveal a potential difference in the distributions of torsion angles of SARS-CoV-2 from those
of SADS-CoV and HKU2.

The advantages of the proposed clustering framework are further highlighted in a simula-
tion study (Section 4.2) by an empirical comparison with existing clustering methods on the
torus. Our method takes the cyclic nature of toroidal data into account and performs supe-
rior when the clusters are of irregular shape. Technical details and supplementary figures are
supplied in the Supplementary Material (Jung, Park and Kim (2021)).

The proposed clustering approaches can be easily adapted for the usual multivariate data
(in the Euclidean space) and can be extended to other types of manifold-valued data in, for ex-
ample, hyperspheres and higher-dimensional tori. In Section 5 we discuss related approaches
in Euclidean spaces and point out future research directions.

1.1. Tools to handle data on the torus. Bivariate angular data can be understood as
lying on the product of two unit circles and are naturally parameterized by angles in
T

2 = [−π,π) × [−π,π) or in [0,2π) × [0,2π). We use the former, but our discussion is
invariant to the choice of parameterization.

Let x = (φx,ψx), y = (φy,ψy) ∈ T
2. The angular subtraction is defined as x � y =

arg(ei(x−y)) := (arg(ei(φx−φy)), arg(ei(ψx−ψy))) in which operations are applied element-
wise. (The range of the argument is (−π,π ].) As an example, (π/2,3π/4) � (0,−3π/4) =
(π/2,−π/2). A natural metric on the torus is

ρ(x, y) = ‖x � y‖2 = ‖y � x‖2 = [{
arg

(
ei(φx−φy))}2 + {

arg
(
ei(ψx−ψy))}2]1/2

.

For any x, y ∈ T
2, ρ(x, y) ∈ [0,

√
2π ]. The toroidal distance function ρ(x, y) can be used, for

example, in defining the nearest neighbors of a point on T
2. Finally, given a set of points X=

{X1, . . . ,Xn}, the (sample) toroidal mean is defined by m(X) = argminx

∑n
i=1 ρ2(x,Xi),

where the minimum is over T
2. The toroidal mean always exists but may not be unique.

Note that our parameterization of the torus with the metric ρ makes the torus a flat torus (cf.
O’Neill (2006)).

2. Distribution-free prediction sets on the torus.

2.1. Conformal prediction framework. Suppose we observe an exchangeable sequence
of random variables {X1, . . . ,Xn} on the torus, where Xi = (φi,ψi) ∈ T

2. A level 1 − α
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prediction set Cn = Cn(X1, . . . ,Xn) satisfies, for new observation Xn+1,

(1) P(Xn+1 ∈ Cn) ≥ 1 − α,

where the probability P is with respect to the exchangeable sequence {X1, . . . ,Xn,Xn+1}.
Conformal prediction framework estimates Cn by introducing conformity scores. The con-
formity score σi = σ(Xn+1;Xi) measures the degree of conformity of Xi , compared to the
augmented sample Xn+1 = {X1, . . . ,Xn,Xn+1}, and is defined for each Xi , i = 1, . . . , n+ 1.
For example, a conformity score defined by σi := √

2π − ρ(m(Xn+1),Xi) for the toroidal
mean m(Xn+1), is higher (i.e., more conformal) as Xi being closer to the mean. Since Xn+1
is not observed, the conformity score σi is computed for each and every candidate x ∈ T

2 by
setting Xn+1 = x. The prediction set given by the conformal prediction framework is

(2) Cn = {
x ∈ T

2 : ξn(x) > α
}
,

where

ξn(x) = 1

n + 1

n+1∑
j=1

1σj≤σn+1 .

It can be shown that, for any choice of conformity score σ , the conformal prediction set
Cn is a valid level 1 − α prediction set, that is, (1) holds if Xn+1 is exchangeable; see, for
example, page 26 of Vovk, Gammerman and Shafer (2005) and Section 2 of Lei, Robins
and Wasserman (2013). A caveat here is that, for a poorly-chosen conformity score σ , the
volume of Cn can be nontrivially larger than using more sensible choices of σ . Lei, Robins
and Wasserman (2013) have shown that if kernel density estimates are used for conformity
scores, then Cn is efficient for data in R

d . In the next subsection we adapt the idea of Lei,
Robins and Wasserman (2013) for the prediction of toroidal data.

2.2. Prediction set by kernel density estimates on the torus. A natural population coun-
terpart of prediction set Cn is the density level set L(t) = {x ∈ T

2 : p(x) ≥ t}, where p(·)
is the density function of Xn+1 on T

2. For a given α, t = tα is defined as the largest t sat-
isfying P(Xn+1 ∈ L(t)) ≥ 1 − α. If the density function p is continuous on T

2 and is not
flat at {x : p(x) = tα}, then it can be shown that the level set L(tα) has exact coverage and
has the smallest volume among all level 1 − α prediction sets (Polonik (1997)). To be pre-
cise, let μ(A) be the area of a subset A ⊂ T

2, scaled by (2π)2, so that μ(T2) = 1. Then,
L(tα) = arg minC μ(C) where the minimum is over {C ⊂ T

2 : P(Xn+1 ∈ C) ≥ 1 − α}.
We build a conformal prediction set Cn using a form similar to the density level set L(tα)

in which p and tα are given by a kernel density estimate (kde) p̂ and conformity scores; see
(5) below. This is done indirectly by using p̂(·) as the conformity score σ(Xn+1, ·).

We first discuss a kde on T
2. Due to the doubly cyclic nature of the sample space T

2,
care is needed in defining a kde. For example, scalable kernels, defined on a bounded domain
such as the Epanechnikov kernel K(x) = 3

4(1 − x2)1|x|≤1 (or any generalization to T
2), do

not integrate to 1 when scaled by x 	→ x/s, s > π . Guassian kernels suffer from the need
of truncation on [−π,π ] or of wrapping around T

2. Instead, following Di Marzio, Panzera
and Taylor (2011), we use a two-product von Mises kernel (with a common concentration
parameter κ): For x = (φ,ψ) ∈ T

2,

(3) Kκ(x) = eκ cos(φ)

2πI0(κ)

eκ cos(ψ)

2πI0(κ)
,

where Iν is the modified Bessel function of the first kind of order ν. The von Mises
density (2πI0(κ))−1eκ cos(φ) plays the role of the normal distribution for circular statis-
tics (Mardia and Jupp (2000)). The kernel (3) is a simple form of toroidal kernels. Kernel
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density estimates, using toroidal kernels, are known to enjoy some nice asymptotic prop-
erties (Di Marzio, Panzera and Taylor (2011)). Using (3), the kde of p(u) at u ∈ T

2 is
p̂n(u) = ∑n

i=1 Kκ(u − Xi)/n, where the cyclic nature of T2 is handled through the cosine
function.

To define conformity scores, we use the kde based on the augmented data Xn+1,

p̂n+1(u) = 1

n + 1

n+1∑
i=1

Kκ(u − Xi)

= 1

n + 1

n∑
i=1

Kκ(u − Xi) + 1

n + 1
Kκ(u − x)

(4)

in which the unobserved Xn+1 is replaced by Xn+1 = x for an inspection point x ∈ T
2.

Setting σi = p̂n+1(Xi), the expression ξn(x) in the conformal prediction set (2) becomes
ξn(x) = 1

n+1{1 + ∑n
i=1 1p̂n+1(Xi)≤p̂n+1(x)}. Observe that ξn(x) ∈ { 1

n+1 , . . . , n
n+1 ,1}, which in

turn leads that πn(x) > α is equivalent to πn(x) > α̃, where

α̃ = in,α

n + 1
, in,α = ⌊

(n + 1)α
⌋
.

To further simplify, let X(i) (i = 1, . . . , n) satisfy p̂n+1(X(i)) ≤ p̂n+1(X(i+1)) for 1 ≤ i ≤
n − 1. Then,

Cn = {
x ∈ T

2 : ξn(x) > α̃
}

= {
x ∈ T

2 : p̂n+1(x) ≥ p̂n+1(X(in,α))
}
.

(5)

The equation (5) is verified in Appendix B.1 in the Supplementary Material (Jung, Park and
Kim (2021)). Note that Cn is not exactly a level set of a single function, as the density estimate
p̂n+1 depends on x. Moreover, to evaluate whether x ∈ Cn for many inspection points x, the
computation of p̂n+1 and X(i) is required for each x. We provide two approximations of (5)
as level sets of p̂n, which require a significantly less computation, in Appendix B.2 in the
Supplementary Material (Jung, Park and Kim (2021)).

As a demonstration, the prediction set Cn of level 0.9 is plotted in Figure 2 (top left panel).

2.3. Prediction set by mixtures of bivariate von Mises. In this section a mixture density
and its variants are used as a conformity score σ in constructing prediction sets.

Our choice of the mixture model on the torus is composed of bivariate von Mises distribu-
tions (Chakraborty and Wong (2017), Mardia, Taylor and Subramaniam (2007)). In particular,
we use the sine variant of bivariate von Mises density (Singh, Hnizdo and Demchuk (2002)),

f (x) = C exp
[
κ1 cos(φ − μ1) + κ2 cos(ψ − μ2) + λ sin(φ − μ1) sin(ψ − μ2)

]
,

for x = (φ,ψ) ∈ T
2, where (μ1,μ2) ∈ T

2 is the location parameter, κ1 > 0, κ2 > 0 are con-
centration parameters and λ, satisfying λ2 < κ1κ2, determines an association of two circular
variables. The normalizing constant is given by

(6) C−1 = (2π)2
∞∑

m=0

(
2m

m

)(
λ2

4κ1κ2

)m

Im(κ1)Im(κ2).

If λ = 0, then f (φ,ψ) is a product of two von Mises densities. For large concentrations
(larger values of κ1, κ2), the density is well approximated by a bivariate normal density. For
simplicity, assume μ1 = μ2 = 0 for now. Then,

(7) f (x) ≈ C′ exp
(
−1

2
xT −1x

)
, −1 =

(
κ1 −λ

−λ κ2

)
,
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where C′ = |2π|−1/2 = √
κ1κ2 − λ2/(2π). The parameters κ1, κ2 and λ can be inter-

preted using (7): Writing σ 2
φ , σ 2

ψ and ρ for the variances of φ and ψ and the correlation

coefficient between them, respectively, we have κ−1
1 ≈ σ 2

φ(1 − ρ2), κ−1
2 ≈ σ 2

ψ(1 − ρ2) and

λ ≈ ρ/{σφσψ(1 −ρ2)}. We require λ ∈ (−√
κ1κ2,

√
κ1κ2), under which condition the bivari-

ate von Mises density is unimodal (Theorem 3, Mardia, Taylor and Subramaniam (2007)).
For a J = 1,2, . . . , a J -mixture density for the toroidal data is given by p(x) =∑J
j=1 πjfj (x), where πj ’s are mixing probabilities (

∑
j πj = 1) and fj (·) is the bivariate

von Mises density with parameters θj := (μ1j ,μ2j , κ1j , κ2j , λj ).
Maximum likelihood estimates of πj , θj and fj (·), based on Xn = {X1, . . . ,Xn}, are de-

noted by π̂j , θ̂j and f̂j (·), respectively, which provide a natural definition of p̂M
n (·) (M stands

for mixture models). These estimates are numerically obtained by an EM algorithm. The de-
tails of the estimation procedure are discussed in Appendix A.1 in the Supplementary Ma-
terial (Jung, Park and Kim (2021)). Let p̂M

n+1 be defined similarly for an augmented data set
Xn+1. Then,

CM
n = {

x ∈ T
2 : p̂M

n+1(x) ≥ p̂M
n+1(X(in,α))

}
is a valid level 1 − α prediction set constructed by setting σi = p̂M

n+1(Xi); compare with
equation (5) and the preceding discussion.

Computing p̂M
n+1 for many x values of the augmented data Xn+1 with Xn+1 = x is not

practical. Instead, we use a sample splitting strategy, called inductive conformal prediction in
the literature of conformal prediction (Lei, Rinaldo and Wasserman (2015), Vovk, Gammer-
man and Shafer (2005)). The idea is to randomly split Xn into X(1) of size n1 and X(2) of size
n2 (n1 + n2 = n). The first part X(1) is used in the estimation of p, resulting in p̂M

n1
(denoted

by p̂ hereafter for notational simplicity). The conformity scores are computed for the second
part X(2) = {Xn1+1, . . . ,Xn}: σi = p̂(Xn1+i ) (i = 1, . . . , n2), then sorted to σ(1) ≤ · · · ≤ σ(n2).
A level 1 − α inductive conformal prediction set is the level set of p̂,

(8) Ĉn = {
x ∈ T

2 : p̂(x) ≥ σ(in2,α)

}
, in2,α = ⌊

(n2 + 1)α
⌋
.

As the computation of p̂ is required only once in (8), evaluating the inductive prediction
set has a huge computational advantage over evaluating CM

n . It is shown in Lei, Rinaldo and
Wasserman (2015) that inductive conformal prediction set also enjoys the distribution-free
finite-sample validity, that is, P(Xn+1 ∈ Ĉn) ≥ 1−α. We emphasize that Ĉn is valid not only
when the mixture density estimate p̂M

n1
is used in σi but also for any choices of conformity

scores. Thus, the variants of Ĉn we discuss below also have the finite-sample validity.
Suppose that the components in p̂ are well separated, then

p̂(x) =
J∑

j=1

π̂j f̂j (x) ≈ p̂max(x) = max
j

π̂j f̂j (x).

This suggests setting the conformity scores to σi = p̂max(Xn1+i ) which, in turn, leads to a
valid inductive conformal prediction set (even if the components are not separated).

Another variant is obtained when considering the normal approximation to the bivariate
von Mises (7). The log-max-density log(p̂max(x)) = maxj {log(π̂j ) + log(f̂j (x))} is approx-
imated by ê(x)/2 + constant, where

ê(x) = max
j

êj (x),

êj (x) = −(x � μ̂(j))
T ̂−1

j (x � μ(j)) + log
((

κ̂1j κ̂2j − λ̂2
j

)
π̂2

j

)
.

(9)

Here, μ̂T
(j) = (μ̂1j , μ̂2j ), and ̂−1

j is given in (7) with the parameters replaced by the j th
component estimates. The “x � y” notation refers to the angular subtraction, defined in Sec-
tion 1.1. Any level set of ê(·) is a union of ellipses on T

2, as shown in Lemma 2.1.
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LEMMA 2.1. Let ê(x) be defined in (9), and let

cj = log
((

κ̂1j κ̂2j − λ̂2
j

)
π̂2

j

)
and

Êj (t) = {
x ∈ T

2 : (x � μ̂(j))
T ̂−1

j (x � μ(j)) ≤ cj − t
}
.

Then, for any t ∈ R, Lê(t) := {x ∈ T
2 : ê(x) ≥ t} = ⋃J

j=1 Êj (t).

PROOF OF LEMMA 2.1. Write ê(x) = maxj êj (x), and observe that êj (x) ≥ t is equiv-
alent to the condition for x ∈ Êj (t). Then, {x ∈ T

2 : maxj êj (x) ≥ t} = {x ∈ T
2 : êj (x) ≥

t for some j} = ⋃
j {x ∈ T

2 : êj (x) ≥ t} = ⋃
j Êj (x), as required. �

Each Êj (t) is an ellipse,1 provided that t < cj . Otherwise, Êj (t) = ∅ for cj − t ≤ 0.
Note that as t increases, the ellipses Êj (t) of Lê(t) become simultaneously smaller, and the
number of ellipses involved decreases (as some Êj (t) degenerates to an empty set).

Setting σi = ê(Xn1+i ) (which are then ordered to satisfy σ(1) ≤ · · · ≤ σ(n2)), the inductive
conformal prediction set is

(10) Ĉe
n = {

x ∈ T
2 : ê(x) ≥ σ(in2,α)

} = Lê(σ(in2,α)).

An advantage of using Ĉe
n is its simple form (the union of ellipses), which is computationally

handy, when we consider clustering in Section 3.
We denote the inductive prediction sets by Ĉmix

n if σ(·) = p̂(·) (8), Ĉmax
n if σ(·) = p̂max(·),

and Ĉe
n if σ(·) = ê(·) (10). The prediction set Ĉe

n is plotted in Figure 2 for the SADS-CoV
torsion angles, further discussed in Section 4.1. (All prediction sets are displayed in the Ap-
pendix Figure C.2 in the Supplementary Material (Jung, Park and Kim (2021)).) An inductive
prediction set Ĉkde

n , given by the kde, is defined similarly.

3. Clustering on the torus.

3.1. Clustering on the torus: An overview. Due to the cyclic nature of data on T
2, reck-

lessly applying off-the-shelf clustering methods can result in unstable and low-quality clus-
tering results. For example, the result of a naive k-means clustering applied to xi ∈ T

2 is
different from the clustering results from the data x′

i := xi + (π,π) ∈ [0,2π)2. However,
since the data set {x′

i} is simply translated from {xi}, the clustering result should be identical.
Moreover, an apparent cluster near the border of the square [−π,π) × [−π,π) is split into
two or more clusters, as exemplified in the top left panel of Figure 3. Some existing work on
clustering toroidal data (Kountouris and Hirst (2009)) suffers from the same problem.

We briefly review adaptations of a few popular clustering methods for use on the torus.
The k-means clustering is by far the most popular off-the-shelf clustering algorithm, ob-

tained by recursively partitioning observations and computing cluster centers. A straight-
forward adaptation of the k-means for data on the torus is given by using the toroidal dis-
tance ρ(x, c) (in partitioning) and the toroidal mean m(X) (for cluster centers). An ap-
proximation of this intrinsic k-means algorithm was considered in Gao et al. (2018). In
contrast, an extrinsic k-means algorithm uses the ambient space for T

2 in which each

1Precisely, the set {x ∈ T
2 : (x � μ)T S−1(x � μ) ≤ 1} is an ellipse for small enough S; for large S, the set is

the intersection of an ellipse with the square of width 2π centered at μ. In our analysis, S = max{cj − t,0}̂j is
typically small.
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FIG. 3. Existing methods for clustering on the torus.

T = [−π,π) is embedded as the unit circle in R
2. Each xi = (φi,ψi) ∈ T

2 is transformed
to x′

i = (cosφi, sinφi, cosψi, sinψi) ∈R
4, then a usual k-means algorithm is applied to x′

i ’s.
This extrinsic k-means algorithm is computationally advantageous, as it uses the vector op-
erations in R

4, and any variant of the k-means algorithm can be used as well. In Figure 3 we
demonstrate the result of the extrinsic k-means clustering for the protein structure data with
initial values given by the k-means++ algorithm (Arthur and Vassilvitskii (2007)).

A number of clustering algorithms depend only on the pairwise distances (or similar-
ity measures) of data (Xu and Tian (2015)). The partitioning around medoids (PAM) al-
gorithm of Kaufman and Rousseeuw (2009) [originally proposed in 1990], its variants
(van der Laan, Pollard and Bryan (2003)) and hierarchical clustering methods (Murtagh and
Contreras (2012), Murtagh and Contreras (2017)) are prominent examples. All of these clus-
tering methods are readily available for data on the torus with pairwise toroidal distances
{ρ(xi, xj ) : 1 ≤ i < j ≤ n} as an input.

Gaussian mixture models are another popular and well-developed class of clustering meth-
ods for vector-valued data; see, for example, Scrucca et al. (2016). A toroidal adaptation of
mixture models is given in Section 2.3 in which we used bivariate von Mises mixture models
(Mardia, Taylor and Subramaniam (2007)). Using a fitted mixture model p̂(·) = ∑

j π̂j f̂j (·),
a soft clustering of an inspection point x is the probability of the cluster membership Y ,
P̂ (Y = j | X = x) = π̂j f̂j (x)/p̂(x) for j = 1, . . . ,K . A hard clustering of x is simply
arg maxj π̂j f̂j (x).

Examples in Figure 3 suggest that, when the apparent clusters are of irregular shapes
(rather than having elliptical shapes), all of the methods above provide unsatisfactory clus-
tering results. For such cases a density level set clustering might be useful (Cheng (1995),
Hartigan (1975)). For a multimodal density p, the level set L(t) = {x ∈ T

2 : p(x) ≥ t} for ap-
propriately chosen t separates each mode from the others. However, it is unclear what should
be an actual clustering function that assigns a cluster label for each x ∈ T

2. A naive approach
of partitioning around modes works poorly when the clusters (or the connected components
of L(t)) are of irregular shapes.
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In the next subsection we develop a conformity-score level set clustering for the torus and
show that a sensible and automated cluster-label assignment can be done by employing a
carefully chosen conformity score.

3.2. Clustering by conformal prediction sets. A conformal prediction set Cn on the torus
developed in Section 2 provides a natural clustering of T

2, where a cluster is given by a
connected component of Cn. If an inductive conformal prediction set (8) or (10) is used
instead of Cn, then the corresponding clustering is equivalent to a density level set clustering
(Hartigan (1975)), except that the density function p(x) is replaced by the conformity score
σ(x) which is not necessarily a density estimate.

We point out that a prediction set (denoted by Ĉ, representing either Cn (5), Ĉmix
n (8), Ĉe

n

(10) or Ĉkde
n ) depends on the choice of level 1 −α and a hyperparameter (concentration κ for

a kde-based prediction set or the number J of mixture components for a mixture-model-based
prediction set). The inherent problem of choosing the number K of clusters is substituted by
the problem of selecting α and the hyperparameter. Our approach for the selection of level
and hyperparameter will be discussed in Section 3.3. For now, let us assume that a prediction
set is given for a prespecified choice of α and κ (or J ).

Identification of connected components. For any given prediction set Ĉ, its connected com-
ponents and the number of distinct components K can be computed algorithmically using
a fine grid on T

2. Our visual illustrations of Ĉ in Figure 2 (top row) are indeed given by
evaluating 1

x∈Ĉ
for x ∈ T 2, where T = {π(2t − 1) : t = 1/100,2/100, . . . ,1}. To identify all

grid points of a connected component containing x, one may use a flood fill algorithm, that
is, recursively identifying neighborhoods of x in Ĉ, which is then applied to all unidentified
points in Ĉ to assign x with labels distinct for each connected component. A drawback of
such an algorithmic approach is that its accuracy deteriorates when the grid T is coarse.

When the elliptical prediction set Ĉe
n is used, an exact identification of the connected

components is possible. Recall that Ĉe
n = ⋃J

j=1 Êj , where Êj = Êj (σ(in2,α)), as defined in
Lemma 2.1. In this case the connected components are exactly unions of ellipses. To identify
the connected components, we create an adjacent matrix A (of size J × J ) whose (i, j)th
element is 1 if Êi ∩ Êj �= ∅, 0 otherwise. (We discuss complications in testing whether two
toroidal ellipses intersect in Appendix A.2 in the Supplementary Material (Jung, Park and
Kim (2021)).) The adjacent matrix A gives rise to an undirected graph (where nodes are
labeled 1, . . . , J ) whose connected components are easily found by a simple breadth first
search. If Êj = ∅, then the corresponding node j is removed from the graph. Denoting the
connected components of the graph by the node indices �1, . . . , �K ⊂ {1, . . . , J }, the clusters
(connected components) of Ĉe

n are

Ek = ⋃
j∈�k

Êj , k = 1, . . . ,K.

Note that Ek ∩ Ek′ = ∅ for k �= k′, Ĉe
n = ⋃K

k=1 Ek , and the number of clusters is K .
As an illustration, Figure 4 displays a toy data set on T

2, overlaid with Êj ’s; the union of
which provides a 90% prediction set. For this data set, E1 = Ê1, E2 = Ê2 ∪ Ê3 and there are
K = 2 clusters.

Cluster assignment. Every x ∈ Ĉ has a natural cluster membership assignment, given by
the label of a connected component it belongs to.

For x /∈ Ĉ, a natural approach of membership assignment is to find the “closest” cluster.
When the closeness is defined by the toroidal distance between x and a connected component
Ek , finding the closest cluster can be handled by a grassfire transformation (Blum (1967)).
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FIG. 4. Clustering by the conformal prediction set Ĉe
n. The prediction set Ĉe

n is obtained by a four-mixture of
bivariate von Mises with level 1 −α = 90%. Here, Ê4 = ∅ is not shown. There are K = 2 connected components,
and the point x is assigned to the second cluster E2 by Ae(x) = 2 (11).

However, this approach has a statistical drawback. To motivate, consider two components of
a bivariate von Mises (vM2) mixture: One is approximately given by a vM2 with parameters
θ1 = (0,0,50,3,0), the other by θ2 = (−π,0,3,50,0). Ellipses corresponding to these two
vM2 components are shown in Figure 4. There, x is closer to Ê1 in terms of the toroidal
distance but is closer to Ê2 in terms of a Mahalanobis distance. Taking the cluster size into
account, we propose a membership assignment rule based on the probability of cluster mem-
bership at x.

Suppose that the clustering is based on the mixture model fitting and that X follows the
J -mixture of bivariate von Mises distributions, and let Y ∈ {1, . . . , J } be the unobservable
component membership of X. Given connected component indices �1, . . . , �K ⊂ {1, . . . , J },
an x ∈ T

2 is assigned to cluster ŷ(x) = arg maxk P̂ (Y ∈ �k|X = x), where P̂ (Y ∈ �k|X = x)

is proportional to
∑

j∈�k
π̂j f̂j (x). Denote this assignment rule as Ap so that, for any x ∈ T

2,

Ap(x) = arg max
k

∑
j∈�k

π̂j f̂j (x).

If components are well separated, then
∑

j∈�k
π̂j f̂j (x) ≈ maxj∈�k

π̂j f̂j (x) and the maximum
over k is well approximated by the maximum over k of maxj∈�k

êj (x); see (9). Thus, an al-
ternative cluster assignment rule, especially for use with Ĉe

n, is given by assigning the cluster
label of x to k if arg maxj êj (x) ∈ �k ,

(11) Ae(x) = k if arg max
j

êj (x) ∈ �k, k = 1, . . . ,K.

Note that for the mixture-based Ĉmix
n (8), the assignment rule Ap guarantees that, for x ∈

Ĉmix
n , Ap(x) is the label of a connected component to which it belongs. Likewise, for the

ellipse-based Ĉe
n, Ae(x) has the correct label.

Another approach is simply creating a new label, representing outliers, for all x /∈ Ĉ,

(12) Ao(x) =
{
k, x ∈ Ek , k = 1, . . . ,K;

“outliers,” otherwise.
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3.3. Selection of level, hyperparameters and the number of clusters. Our proposed clus-
tering, introduced in Section 3.2, depends on the choice of level 1 − α and a hyperparameter
(the number of mixture components J if using Ĉe

n or the concentration parameter κ if using
Ĉkde

n ). Without losing generality, we focus on the clustering based on Ĉe
n and present a data-

driven approach of choosing α and J . Write Ĉe
n = Ĉe

n(α, J ), as it depends on α and J . The
number of clusters K is just the number of connected components of Ĉe

n(α, J ).
As a prediction set, a desired level 1 − α of Ĉe

n may be predefined. For a fixed α, which
choice of J provides the best prediction set? This question was answered for a kde-based pre-
diction set in Lei, Robins and Wasserman (2013). Since the coverage probability of Ĉe

n(α, J )

is guaranteed to exceed 1 − α, a prediction set with the smallest volume is desirable. The
optimal choice of J , given an α, is

(13) Jα = arg min
J

μ
(
Ĉe

n(α, J )
)
,

where the area μ(A) of A ⊂ T
2 is scaled to satisfy μ(T2) = 1.

With clustering in mind, there is no predetermined level 1−α, but the number J of mixture
components or, equivalently, the fitted J -mixture bivariate von Mises model (π̂j , f̂j (·)) may
be given. The choice of α affects the number of clusters K more gravely than the choice of J .
As the coverage 1 − α becomes larger, more components are connected to each other which
results in a smaller number of clusters. Ideally, one would choose as large coverage 1 − α

as possible and, simultaneously, wish for as small volume of the prediction set Ĉe
n(α, J ) as

possible. However, there is a trade-off between large coverage (or, equivalently, small α) and
small μ(Ĉe

n(α, J )). We propose to choose α by

(14) αJ = arg min
α

α + μ
(
Ĉe

n(α, J )
)
.

Choosing α by αJ is equivalent to finding an “elbow” of the graph of the function α 	→
μ(Ĉe

n(α, J )). As an attempt of interpretation, we note that increased coverage (by choosing
α < αJ ) leads for the volume of prediction sets to increase sharply; on the other hand, by
reducing the volume (α > αJ ), the coverage probability 1 − α decreases fast. Setting the
coverage at 1 − αJ strikes a balance.

To choose both α and J altogether, (13) and (14) are combined to

(15) (α̂, Ĵ ) = arg min
α,J

α + μ
(
Ĉe

n(α, J )
)

which is equivalent to finding the most lower-left point of {(α,μ(Ĉe
n(α, J ))) : α ∈ (0,1), J =

1, . . . , Jmax}.

4. Clustering protein torsion angles.

4.1. Analysis of torsion angles from coronavirus protein structures. We analyze torsion
angles from Cryo-EM structures of SADS-CoV, HKU2 and SARS-CoV-2 (coronavius) spike
glycoproteins (Walls et al. (2020), Yu et al. (2020)). Coronaviruses are a large group of viral
pathogens and pose severe threats to world healths when transmitted to humans. Severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-stranded RNA coronavirus,
and is contagious in humans (Chan et al. (2020), Gorbalenya et al. (2020)). The swine acute
diarrhea syndrome coronavirus (SADS-CoV), widespread in 2017 among commercial pigs
in China, is found to share identical sequences up to 95% with Rhinolophus bat coronavirus
(HKU2) (Gong et al. (2017)). In this analysis we confirm that SADS-CoV and HKU2 have al-
most identical protein backbone torsion angles, but SARS-CoV-2 has different sets of torsion
angle clusters when compared to SADS-CoV.
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We use the (φ,ψ) torsion angles extracted from SADS-CoV to illustrate our approaches
of prediction sets and clustering and use the respective torsion angle data from HKU2 and
SARS-CoV-2 as a validation set. The clustering of torsion angles from SARS-CoV-2 turns
out to be different from the clustering for SADS-CoV. The data are available to public in the
worldwide Protein Data Bank (PDB) with codes 6VXX, 6M15 and 6M16. The R packages
bio3d (Grant et al. (2006)) was used to extract the data from the PDB.

The SADS-CoV protein structure is available from sequence 20 to 998. The torsion angle
φ is not defined for the first location and ψ for the last location. Excluding the first and last
locations and other missing values, the SADS-CoV data set we analyze is the sequence of
(φi,ψi) ∈ T

2 of length n = 964. Similar preprocessing gives HKU2 and SARS-CoV-2 tor-
sion angles of sizes 964 and 824. Note that each of these three torsion angles data sets is
sequentially observed along the backbone of a protein. The torsion angles are thus, in fact,
serially correlated, and the assumption of exchangeability may not hold in general. Never-
theless, inspecting the scatterplot of the (φi,ψi) angles has been useful in understanding a
protein structure (Eltzner, Huckemann and Mardia (2018), Mardia, Taylor and Subramaniam
(2007)). Our analysis only uses the scatter of torsion angles which can then be assumed in-
dependent.

Prediction sets and the choice of tuning parameters. Since the sample size n = 964 is not
small, it makes sense to construct the inductive conformal prediction sets. We demonstrate the
use of conformity scores based on kernel density estimates and the estimated bivariate von
Mises mixtures. The concentration parameter κ > 0 plays the role of the reciprocal of the
bandwidth in the usual kernel density estimation. For large κ , the prediction set Ĉkde

n (α, κ) is
prone to catch random fluctuations in the data set, as exemplified for Ĉkde

n (0.1,100), shown
in the bottom right panel of Figure 5. The difference of Ĉkde

n (α, κ), according to varying κ , is
less severe if the coverage 1 −α is high. As an instance, the 98% prediction sets shown in the

FIG. 5. Conformal prediction sets Ĉkde
n (α, κ), the boundaries of which are displayed as gray curves, for the

SADS-CoV torsion angles.
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FIG. 6. Conformal prediction sets Ĉe
n(α,10), their elliptical components and cluster memberships for torsion

angles of the SADS-CoV protein structure.

left panels of Figure 5 are similar to each other, in spite of different choices of κ = 25,100.
Choosing (α, κ) = (0.1,25) gives a nice separation of three connected components of the
prediction sets (top right panel).

A bivariate von Mises mixture distribution with J = 10 components is also fitted to the
data with the restriction of λ = 0. (Other choices of J are considered later.) Prediction sets are
obtained from this mixture model at various nominal level 1 − α. For cluster identification
and assignment, the prediction set Ĉe

n, consisting of the union of ellipses, is convenient in
identifying the connected components. To inspect the effect of varying α, we have plotted
Ĉe

n = ⋃J
j=1 Êj (σ(in2 ,α)) and each of the ellipses (Êj ’s) for a few choices of α in Figure 6.

When the coverage 1−α is large, the ellipses involved are large as well, resulting in a smaller
number of connected components. As α increases, the radii of all ellipses decrease which
results in a connected component either to be divided into two components or to disappear.
For example, the largest connected component (labeled 1) for the α = 0.02 case is divided
into two connected components (labeled 1 and 2) for the α = 0.05 case; see the top two
panels of Figure 6. On the other hand, comparing α = 0.05 with 0.1 (bottom left panel), the
connected component labeled 4 at α = 0.05 disappears at α = 0.1, as the ellipse becomes
an empty set. For each choice of α, the number K of clusters are counted as the number of
connected components, and the cluster membership Ae(x) (11) is computed for all torsion
angles x in the SADS-CoV protein structure, also shown in Figure 6. It is evident that the
clustering results depend on the choice of α and the hyperparameter J used in fitting the
mixture model.

If there is a desired level of coverage 1 − α, then the best hyperparameter J (or κ) can
be chosen to minimize the volume μ(C) of the corresponding prediction set C (13). For the
SADS-CoV torsion angles, the graph of (κ,μ(C)) is roughly convex (as shown in the top
left panel of Figure 7), leading that a choice of κ near 30 is a stable choice. Note that the
kde-based prediction set Ĉkde

n (α, κ) is continuous with respect to both α and κ . On the other
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FIG. 7. The choice of level α and the hyperparameter J or κ is given by the minimizer of the criterion (15), and
is shown for SADS-CoV torsion angles. The bottom panel shows the values of criterion for a few choices of J .
(This figure with all values of J is contained in the Appendix Section C in the Supplementary Material (Jung, Park
and Kim (2021)).)

hand, the volume of the mixture-model based prediction set μ{Ĉe
n(α, J )} has a large fluctu-

ation over increasing J (see the top-right panel of Figure 7), indicating that estimating the
mixture model with a large number of components from a sample of size n1 = 482 might lead
to unstable estimates. For the SARS-CoV-2 torsion angles, the graph of (α,μ{Ĉe

n(α, J )}) is
roughly convex and smooth (see Appendix Figure C.4 in the Supplementary Material (Jung,
Park and Kim (2021))). Nevertheless, in view of the criterion ν(α, J ) := α + μ(Ĉn) (15),
changes due to the level is more substantial than the changes over J . This is illustrated in
the bottom panel of Figure 7, where the values of ν(α, J ) are evaluated and plotted for var-
ious combinations of α ∈ (0,0.5) and a few choices of J ∈ {3, . . . ,35}. The criterion was
minimized to be ν(α̂, Ĵ ) ≈ 0.241 at α̂ ≈ 0.079, Ĵ = 12, at which more than 92% of the sam-
ple is bound to lie in the prediction set Ĉn whose volume is 100μ(Ĉn)% ≈ 14.1% of the
torus. Here, Ĉn = Ĉe

n. The level α̂ and the number of components Ĵ = 12 are used in the
subsequent analysis of clustering for SADS-CoV torsion angles. A similar analysis done for
SARS-CoV-2 leads α̂ ≈ 0.10, Ĵ = 22.

Clustering and a post analysis. For each set of SADS-CoV and SARS-CoV-2 torsion an-
gles, we obtained K = 3 clusters Ek for the SADS-CoV (K = 6 clusters for the SARS-CoV-2)
and evaluated the cluster membership Ae(x) (11) for each data set; see Figure 8.

The protein structure is known to follow strict geometric rules. The three larger clusters
(shown in both cases) correspond to the well-known shapes of protein structures (Lovell et al.
(2003), Walther and Cohen (1999)). In particular, The cluster labeled 1 in the top panel of
Figure 8 is related to the right-handed α-helix, Cluster 2 is to the β-sheet and Cluster 3
is to the left-handed α-helix. In the bottom panel of Figure 8 for the SARS-CoV-2, three
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FIG. 8. Clustering results for SADS-CoV torsion angles (top) and SARS-CoV-2 torsion angles (bottom).

additional smaller clusters are shown. It appears that Cluster 3 (filled squares) corresponds to
a less common conformation called γ -turns (cf. Figure 1 of Lovell et al. (2003)). Clusters 5
and 6 of the SARS-CoV-2 do not overlap with any torsion angles of SADS-CoV, indicating a
potential difference in protein structures of the two coronaviruses.

Empirical coverage of prediction regions. The SADS-CoV protein structure is known to
be nearly identical to the HKU2 (Yu et al. (2020)). On the other hand, SARS-CoV-2 is a
different strain of coronavirus, whose protein backbone structure differs from the others. The
prediction sets Ĉn, based on which the proposed clustering is conducted, are theoretically
valid, that is, P(x ∈ Ĉn) ≥ 1 − α, for all α ≥ 0, for any n and for any choice of prediction set
Ĉkde

n , Ĉe
n, Ĉmix

n and Ĉmax
n . We empirically confirm that the coverage of Ĉn (estimated from

the SADS-CoV angles) meets the nominal level 1 −α for the SADS-CoV and HKU2 torsion
angles. In the top two panels of Figure 9, the empirical coverage probability P̂ (x ∈ Ĉn) is
near the nominal level 1 − α and is generally above the lower bound of a 98% pointwise
confidence interval for P(x ∈ Ĉn | Ĉn), for most values of α ∈ (0,0.2).

For the SARS-CoV-2 angles, shown in the bottom panel of Figure 9, the coverage of the
SADS-CoV-based prediction sets is below the 98% pointwise confidence lower bound for
higher levels 1 − α > 0.9. This indicates again a potentially different backbone structure of
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FIG. 9. Empirical coverage of the prediction sets (estimated from the SADS-CoV torsion angles) for the HKU2,
SADS-CoV and SARS-CoV-2 torsion angles (shown on top, middle and bottom panels, respectively). The vertical
dotted line is at 1 − α̂, at which the clustering for SADS-CoV angles is performed with Ĉe

n(α̂, Ĵ ).

the SARS-CoV-2 protein. Caution is needed in making a conclusion since the confidence
limits are obtained for the given prediction set. In Appendix B.4 in the Supplementary Ma-
terial (Jung, Park and Kim (2021)), we show that the variance due to the estimation of Ĉn is
larger than the variance due to the evaluation of the coverage, from a simulated data set of
Section 4.2.

The hyperparameters for the prediction sets in Figure 9 are chosen to be κ̂ = 30 and Ĵ = 12
based on the criterion (15). Other choices of κ and J lead to similar results.

4.2. Clustering artificial toroidal data. The proposed clustering procedure is tested upon
two artificial data on the torus. We empirically compare the clustering performances of our
proposal with existing methods in Section 3.1.

The two artificial data are each sampled from the following models:

• Model I: The dataset of size n = 270 is sampled from a mixture of K = 5 clusters, where
three clusters are sampled from bivariate normal distributions (with sizes 70, 50, 50), and
the other two are each sampled from the uniform distribution on a rectangle defined on R

2

(each with size 50), then wrapped onto the torus.
• Model II: The dataset of size n = 500 is sampled from a mixture of K = 3 clusters, where

the first cluster is sampled from a spherical normal distribution with size n1 = 100, the
second cluster of size n2 = 350 is from the uniform distribution on a large “L”-shaped
region and the third cluster of size 50 is sampled from the uniform distribution on the
entire T

2.

Data sets described above are generated for the estimation of prediction regions and clus-
tering rules (displayed in Figure 10). These data sets are called training data. Independent sets
of data from the same models are also generated for validation and are called testing data.
Clustering rules based on the mixture models with J , α chosen by the proposed criterion (15)
result in K = 5 clusters for Model I and K = 2 for Model II.
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FIG. 10. Simulated toroidal data sets with true cluster labels.

We have compared four methods of clustering: (i) the naive k-means clustering (ignoring
the angular constraint), (ii) the extrinsic k-means clustering in the ambient space and the
proposed predictive clustering with membership assignment by (iii) the clustering rule Ae

(11) and by (iv) the clustering rule Ao (12), creating an “outlier” cluster; see Sections 3.1
and 3.2 for details. For each model the clustering rules are estimated using the training data,
based on which the cluster memberships of the testing data are evaluated. Figure 11 displays
the predicted cluster memberships for the testing data.

We now inspect the results for each model. Since Model I consists of five well-separated
clusters, human eye is excellent in accurately clustering the data with an understanding of
the “cut-and-flattened” torus plots shown in Figures 10–11. The naive k-means algorithm
does not reflect the geometry of toroidal data and results in a poor clustering (top left panel
of Figure 11). The extrinsic k-means correctly identifies the cluster #1 (split across φ =
−π = π ) but mistakenly splits the elongated cluster (labeled 4 in Figure 10) into two clusters
(labeled 2 and 4 in Figure 11). Our proposal correctly predicts all cluster memberships. To
quantify the quality of clustering, we use the adjusted Rand index (Hubert and Arabie (1985)).
For comparison of two cluster indices, one with G clusters and the other with K clusters, let
Ngk be the number of observations whose first cluster index is g and the second index is k.
The index is defined as

ARI =
∑G

g=1
∑K

k=1
(Ngk

2

) − NGNK/
(N

2

)
(NG + NK)/2 − NGNG/

(N
2

) ,

where NG = ∑G
g=1

(Ng·
2

)
and NK = ∑K

k=1
(N·k

2

)
. The ARI has the value of 1 when two in-

dices match perfectly. Table 1 collects the ARIs comparing the predicted labels from each
clustering method to the true cluster labels of the testing data. The proposed clustering with
assignment rule Ae performs almost perfectly for data from Model I.

The data from Model II can be viewed as two large clusters sprinkled with outliers (see
right panels of Figure 11). For this reason we have used K = 2 in the k-means clusterings. As
before, the naive k-means algorithm is not suitable for toroidal data. The extrinsic k-means is
not successful for this data set due to the irregularly shaped cluster. The proposed clustering
methods correctly find the two large clusters. When the membership is assigned by Ae (using
the conformity score êj (x)), all observations belonging to the true “outlier” group are forced
to be assigned to either the “L”-shaped cluster or the ball-shaped cluster. On the other hand,
the cluster membership rule Ao with outliers performs better, as evidenced by the highest ARI
in Table 1 and the visually satisfying clustering result in the lower right panel of Figure 11.
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FIG. 11. Clustering results for testing sets. Results for Model I are shown on the left column, Model II on the
right.

5. Summary and discussion. We have introduced a clustering procedure for toroidal
data based on the conformal prediction sets. Conformal prediction sets can be estimated us-
ing any conformity score, and we have demonstrated the use of the kernel density estimates,
density estimates from a bivariate von Mises mixture model and their variants in the con-
struction of the conformity scores. The proposed clustering uses the mixture model-based



CLUSTERING ON THE TORUS 1601

TABLE 1
Adjusted Rand indices (ARI), evaluated for predicted cluster labels of synthetic toroidal data. Shown are the

averages (and standard deviations in the parenthesis) of the ARIs obtained from 100 repetitions. The higher ARI,
the better clustering membership prediction

Model Naive K-means Extrinsic K-means Proposal (Ae) Proposal (Ao)

I 0.57 (0.06) 0.89 (0.13) 0.98 (0.03) 0.87 (0.06)
II 0.12 (0.10) 0.43 (0.13) 0.73 (0.07) 0.82 (0.09)

prediction sets in identifying clusters and cluster membership assignment. We have shown
that our approach performs better than naive adaptations of off-the-shelf clustering algorithms
to toroidal data.

Our approach can be easily adapted for clustering the usual multivariate data in low-
dimensional vector spaces. For data in the Euclidean space, the idea of using conformal
prediction framework for clustering has also been explored by Shin, Rinaldo and Wasser-
man (2019) and Nouretdinov et al. (2020). Our proposal shares some similarity with these
works but differs in the choices of conformal scores and the hyperparameters (as well as the
different sample spaces). We also point out that the goal of Shin, Rinaldo and Wasserman
(2019), building a prediction set based on clustering, is the opposite of this work: Cluster
assignment based on prediction sets.

Our approach can be naturally extended to handle data on general tori Tp (p ≥ 2), direc-
tional data on hyperspheres {x ∈ R

p : ‖x‖2 = 1} or other types of manifold-valued data. We
have focused on the bivariate circular variables (φ,ψ) ∈ T

2, since the torsion angles have
been known to well represent major backbone structures of proteins. For multivariate angles
in a higher dimensional torus, fitting mixture models can be computationally expensive and
unstable. A key direction for future research is to devise a conformity score that is compu-
tationally efficient for high p, and is easy to identify the resulting connected components
(clusters). General tori Tp appear as the data space for some biochemical applications. For
example, the backbone of a protein has, in fact, a third angle, called ω-angle, which are of-
ten ignored because ω ≈ π . If the protein has side chains, at each side chain there are a few
torsion angles χi defined. In describing richer RNA structures, Sargsyan, Wright and Lim
(2012) and Eltzner, Huckemann and Mardia (2018) have used seven torsion angles of RNA
structures in T

7.
An important issue we have not fully investigated is the sampling distribution of Ĉn. An

empirical investigation in Appendix B.4 in the Supplementary Material (Jung, Park and Kim
(2021)) indicates that the variation due to Ĉn in P(x ∈ Ĉn | Ĉn) is substantial. We leave this
as a future topic of research.
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SUPPLEMENTARY MATERIAL

Supplement to “Clustering on the torus by conformal prediction” (DOI: 10.1214/21-
AOAS1459SUPPA; .pdf). We provide (A) EM algorithms for mixtures of bivariate von Mises
and an algorithm to test the intersection of two toroidal ellipses, (B) proofs and technical
details, and (C) supplementary figures referenced in Section 4.

https://doi.org/10.1214/21-AOAS1459SUPPA
https://doi.org/10.1214/21-AOAS1459SUPPA


1602 S. JUNG, K. PARK AND B. KIM

Source code and data for “Clustering on the torus by conformal prediction” (DOI:
10.1214/21-AOAS1459SUPPB; .zip). Data and R codes to reproduce the analysis are con-
tained in a zipped file RcodesClustorus.zip. R functions used in the analysis are also available
at https://github.com/sungkyujung/ClusTorus.
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